Postgraduate Residency Programme

2013

MS Phase - B Curriculum
(Community Ophthalmology)

Bangabandhu Sheikh Mujib Medical University
Dhaka-1000, Bangladesh.
Index

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Subject</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>01</td>
</tr>
<tr>
<td>2.</td>
<td>Goals and objectives :</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>2.1 Overall Goals</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>2.2 General Objectives</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Admissions Requirements for Phase B Training</td>
<td>05</td>
</tr>
<tr>
<td>4.</td>
<td>Phase B Curriculum structure :</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>4.1 Phase B : Community Ophthalmology Speciality Training</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>4.1.1. Expected outcomes at the completion of the Phase B Programme</td>
<td>06</td>
</tr>
<tr>
<td>5.</td>
<td>Teaching and Learning Methods</td>
<td>06</td>
</tr>
<tr>
<td>6.</td>
<td>Record of training</td>
<td>07</td>
</tr>
<tr>
<td>7.</td>
<td>Research</td>
<td>08</td>
</tr>
<tr>
<td>8.</td>
<td>Assessment</td>
<td>08</td>
</tr>
<tr>
<td>9.</td>
<td>Supervision and Training Monitoring</td>
<td>09</td>
</tr>
<tr>
<td>10.</td>
<td>Curriculum Implementation, Review and Updating</td>
<td>10</td>
</tr>
<tr>
<td>11.</td>
<td>Optics</td>
<td>11</td>
</tr>
<tr>
<td>12.</td>
<td>Cataract and Lens</td>
<td>16</td>
</tr>
<tr>
<td>13.</td>
<td>Cornea, External Diseases and Refractive Surgery</td>
<td>23</td>
</tr>
<tr>
<td>14.</td>
<td>Glaucoma</td>
<td>28</td>
</tr>
<tr>
<td>15.</td>
<td>Neuro-Ophthalmology</td>
<td>31</td>
</tr>
<tr>
<td>16.</td>
<td>Ophthalmic Histopathology</td>
<td>34</td>
</tr>
<tr>
<td>17.</td>
<td>Oculoplastic Surgery and Orbit</td>
<td>36</td>
</tr>
<tr>
<td>18.</td>
<td>Pediatric Ophthalmology and Strabismus</td>
<td>40</td>
</tr>
<tr>
<td>19.</td>
<td>Vitreoretinal Diseases</td>
<td>44</td>
</tr>
<tr>
<td>20.</td>
<td>Uveitis</td>
<td>49</td>
</tr>
<tr>
<td>21.</td>
<td>Ocular Oncology</td>
<td>51</td>
</tr>
<tr>
<td>22.</td>
<td>Low Vision Rehabilitation</td>
<td>52</td>
</tr>
<tr>
<td>23.</td>
<td>Ophthalmic Practice and Ethics</td>
<td>54</td>
</tr>
<tr>
<td>24.</td>
<td>Conclusion :</td>
<td>55</td>
</tr>
</tbody>
</table>
Introduction

What is Community Ophthalmology?

Most people know that an ophthalmologist is a medical doctor who diagnoses and treats diseases of the eye. These diseases may range from simple things like "red eye" to more serious infections of the inner or outer eye, cataract, glaucoma, misalignments of the eyes, diseases of the eyelids, retinal diseases and diseases in the bony eye socket (orbit). People tend to become aware of their own eye problems either because they have pain or because their vision decreases. People with money, education, or easy access to medical services may even go to see doctors when they have no problem, just to be reassured that everything is OK.

It's easy for an ophthalmologist to work in a clinic or hospital and simply examine and treat the people who come to see him; most busy ophthalmologists won't think about the patients that need eye care who don't come in for examination. Out in the community, however, there may be many people with eye disease for every one who shows up at a clinic for examination and treatment. We know about this because of population-based surveys, in which trained teams go into the community, track people to their houses or work, and examine nearly every member of a community. Results from such surveys are often surprising; for example, in much of sub Saharan Africa we know that there are about 10 patients blind from cataract in the community for every patient who gets his cataract operated at the hospital. Of course this varies widely from place to place depending on many factors, but overall, among those blind from cataract, generally less than 10% get an operation to restore sight.

To assume that the reason so many go untreated is that there is a lack of doctors is overly simplistic. In fact, many hospitals in developing countries like Bangladesh are not very busy and do not work to their full capacity. The fact is that most blind people do not ever get to the clinic or hospital for treatment.

Community ophthalmology examines the problem of blindness from the perspective of the community. We look at the question of why there may be 10 blind in the community for every 1 who makes it to the doctor to receive treatment. This requires investigating the size of the problem, the causes of blindness and eye disease in the community, the availability of eye services, the attitudes of the people towards visual disability or eye diseases, the attitudes of the people towards the services, and the many barriers that prevent people from using services. When these issues are defined, then solutions can be sought, agreements can be reached among all those concerned, and programmes can be implemented to put solutions in place.

Community ophthalmology training complements clinical ophthalmology; it includes training in survey methodology, needs assessments, proper data collection and interpretation, programme design and implementation, management, and communication and effective teaching. Legions of ophthalmologists trained only in how to diagnose and treat eye diseases will not prevent blindness in most developing countries like Bangladesh. Blind and visually impaired people must come from communities to receive medical care; we must look at the processes they go through to receive care if we hope to make a significant decrease in the number of blind and visually impaired.
Community Ophthalmology Residency Programme

Residents will undertake a three year intensive Phase B training after completion of Phase A training in order to achieve the levels of knowledge, skills and expertise required for clinical practice in the field of ophthalmology. It is a competency-based program emphasizing on meaningful integration and contextualization. The two years phase A training programme is designed to introduce and develop the broad range of core knowledge, skills, attitudes and behaviours required to become a competent physician. The knowledge and skills acquired during Phase A training are further focused and refined during Phase B training, which is a 3 years specially-specific training in Ophthalmology.

The teaching, learning and assessment of the curriculum is facilitated by the provision of comprehensive, educationally oriented supervision and support, which is provided to all trainees across both the phases of the programme.

Goals and objectives:

2.1 Overall Goals:

1. To prepare community ophthalmologist who would be able to meet and respond to the changing healthcare needs and expectation of our society.

2. The community ophthalmologist who posses knowledge, skills and attitudes that will ensure that they are competent to practice ophthalmology, safely and effectively.

3. To ensure that they have appropriate foundation for lifelong learning and further training in their speciality.

4. To help them develop to be critical thinkers and problem solvers when management health problems in the community they serve.

2.2 General Objectives:

The educational and training process aims to produce community ophthalmologist who -

- Can address all aspects of the healthcare needs of patients and their families.
- Maintain the highest standards appropriate in their professional field.
- Are aware of current thinking about ethical and legal issues.
- Are able to act as safe independent practitioners whilst recognizing the limitation of their won expertise and are able to recognize their obligation to seek assistance of colleagues where appropriate.
- Are aware of the procedures, and able to take appropriate action, when things go wrong, both in their own practice and in that of others.
- Will be honest and objective when assessing the performance of those they have supervised and trained.
- Can take advantage of information technology to enhance all aspects of patient care.
- Can develop management plans for the “Whole patient” and maintain a knowledge in other areas of medicine which imping on the specialty of community ophthalmology.
- Understand that more effective communication between them and their patients can lead to more effective treatment and care.
- Apply appropriate knowledge and skill in the diagnosis and management of patients.
• Establish a differential diagnosis for patients presenting with medical problems by the appropriate use of the clinical history, examination and investigations.
• Are competent to perform the core investigations and procedures required in their specialties.
• Develop clinical practice which is based on an analysis of relevant clinical trials and to have an understanding of their research methodologies.
• Are able to apply the knowledge of biological and behavioural sciences in clinical practice.
• Are able to identify and take responsibility for their own educational needs and the attainment of these needs.
• Have developed the skills of an effective teacher.

Aims
This course aims to provide eye health professionals with the public health knowledge and skills required to reduce blindness and visual disability in their population. The training will enable them to:

• develop a public health approach to eye care services and the control of blindness in keeping with the objectives of VISION 2020: The Right to Sight;
• acquire and apply skills in epidemiological and operational research, critical analysis of strategies for the control of major blinding eye diseases, in programme planning, management and evaluation;
• facilitate a personal development, so enabling individuals to contribute more fully to their countries’ and societies’ eye health;
• engage with local, national and international networks of health professionals and systems, for the prevention of blindness worldwide.
• Competent ophthalmologist as well scientist and community leader

Specific Objectives
At the end of this course students should be able to:

• describe the basic epidemiology of the major blinding eye diseases;
• design and interpret studies to assess public health eye care needs using appropriate methods;
• critically appraise and select appropriate public health intervention for the major blinding eye diseases;
• design a comprehensive eye care programme for appropriate preventive and therapeutic measures for a community;
• develop the skills necessary for resource mobilisation, clinical Diagnosis medical as well surgical intervention as per needed.

Patient care.
" create and sustain a therapeutic and ethically sound relationship with patients;
" Medical knowledge.
Practice-based learning and improvement. Use effective listening skills and elicit and provide information using effective nonverbal, explanatory, questioning, and writing skills; and

"Interpersonal and communication skills.
"Professionalism.
"Systems-based practice.
"Work effectively with others as a member or leader of a health care team or other professional group.

Professionalism" Trainees ("residents") must be able to provide patient care that is compassionate, appropriate, and effective for the treatment of health problems and the promotion of health. Residents are expected to:

Residents must demonstrate a commitment to carrying out professional responsibilities, adherence to ethical principles, and sensitivity to a diverse patient population.

Residents are expected to:
"Communicate effectively and demonstrate caring and respectful behaviors when interacting with patients and their families;" demonstrate respect, compassion, and integrity; a responsiveness to the needs of patients and society that supercedes self-interest; accountability to patients, society, and the profession; and a commitment to excellence and ongoing professional development;" gather essential and accurate information about their patients;" make informed decisions about diagnostic and therapeutic interventions, based on patient information and preferences, up-to-date scientific evidence, and clinical judgment;" demonstrate a commitment to ethical principles pertaining to provision or withholding of clinical care, confidentiality of patient information, informed consent, and business practices; and develop and carry out patient management plans;" counsel and educate patients and their families;" use information technology to support patient care decisions" demonstrate sensitivity and responsiveness to patients' and patient education; perform competently the medical and invasive procedures considered essential for the area of practice; culture, age, gender, and disabilities.

Systems-based Practice
Residents must demonstrate an awareness of and responsiveness to the larger context and system of health care and the ability to effectively call on system resources to provide care that is of optimal value.

Residents are expected to
"Provide health care services aimed at preventing health problems or maintaining health;
"Work with health care professionals, including those from other disciplines, to provide patient-focused care.
"Understand how their patient care and other professional Medical Knowledge practices affect other health care professionals, the health care organization and the larger society, and how these elements of the system affect their own practice;
Residents must demonstrate knowledge about established and evolving biomedical, clinical, and cognate (e.g., epidemiological and social-behavioral) sciences and the application of this knowledge to patient care.

Residents are expected to

"know how types of medical practice and delivery systems differ from one another, including methods of controlling health care costs and allocating resources;

"demonstrate an investigatory and analytic thinking approach to clinical situations;

"practice cost-effective health care and resource allocation that do not compromise quality of care;

"know and apply the basic and clinically supportive sciences which are appropriate to ophthalmology.

"advocate for high quality patient care and assist patients in Practice-based Learning and Improvement dealing with system complexities; and Residents must be able to investigate and evaluate their patient care practices, appraise and assimilate scientific evidence, and improve their patient care practices.

Residents are expected to

"know how to partner with health care managers and health care providers to assess, coordinate, and improve health care and know how these activities can affect system performance.

"analyze practice experience and perform practice-based improvement activities using a systematic methodology; Professional attitudes and conduct require that trainees must also have developed a style of care, which is:

"locate, appraise, and assimilate evidence from scientific studies related to their patients' health problems;

"humane (reflecting compassion in providing bad news, if necessary; the management of the visually impaired; and re-cognition of the impact of visual impairment on the patient and society);" obtain and use information about their own population of patients and the larger population from which their patients are drawn;" apply knowledge of study designs and statistical methods to"reflective (including recognition of the limits of their knowl-the appraisal of clinical studies and other information on diagnostic and therapeutic effectiveness, skills and understanding);

3. Admissions Requirements for Phase B Training :

A. Residents who has successfully completed Phase A training and passed Phase A Final Examination are eligible for enrolment in the Phase B Programme.

B. Candidates with FCPS / MS in Ophthalmology can be enrolled directly into Phase-B of the residency programme.
4. Phase B Curriculum structure:
The training is designed to develop both the generic and speciality-specific attributes necessary to practice independently as a consultant ophthalmologist. The aim is to train individuals to provide the highest standard of service to patients with ophthalmic disorders. This includes the development of positive attitudes towards lifelong learning and the ability to adopt to future technological advances and the changing expectations of society.

4.1 Phase B: Community Ophthalmology Speciality Training:
In-depth speciality-specific educational and training programme in this phase will make the resident competent and prepare them for the speciality qualification. It will provide educational programme covering the speciality of ophthalmology and its subspecialities, Biostatistics, Research Methodology and Medical Education along with rotation specific clinical training.

4.1.1. Expected outcomes at the completion of the Phase B Programme:
Residents of this training programme will be equipped to function effectively within the current and emerging professional, medical and social contexts. At the completion of the training programme in community ophthalmology as defined by this curriculum, it is expected that a new ophthalmologist will have developed the clinical skills and have acquired the theoretical knowledge for competent ophthalmology practice. It is expected that a new ophthalmologist will be able to -

- Utilize effective communication with patients and their families and with professional colleagues.
- Be devoted to lifelong learning.
- Be equipped to manage both acute and chronic ophthalmologist diseases.
- Identify the pathophysiology and manifestations of ophthalmic diseases, and modern therapeutics, which can be applied to patient diagnosis and management.
- Apply appropriate skills to perform necessary diagnostic and therapeutic decisions.
- Demonstrate a capacity to rationally analyses clinical data and published work.
- Demonstrate an understanding of and commitment to the role of research in advancing medical care of cardiovascular disease.
- Develop commitment to ophthalmic, ethical professional behavior.
- Identify ophthalmic health issues of importance to the community and contribute constructively to debate about those issues.
- Apply primary and secondary prevention strategies in ophthalmic disease.

5. Teaching and Learning Methods:
The bulk of learning occurs as a result of clinical experiences (experiential learning, on-the-job learning) and self-directed study. The degree of self-directed learning will increase as trainees became more experienced. Teaching and learning occurs using several methods that range from formal didactic lectures to planned clinical experiences. Aspects covered will include knowledge, skills and practices relevant to the discipline in order to achieve specific learning outcomes and competencies. The theoretical part of the curriculum presents the current body of knowledge necessary for practice. This can be imparted using lectures, grand teaching rounds, clinico-pathological meetings, morbidity/mortality review meetings, literature reviews and presentations, journal clubs, self-directed learning, conferences and seminars.
Placement of phase B students
MS (Community Ophthalmology) in different blocks
For Three Years

<table>
<thead>
<tr>
<th>Block</th>
<th>Month</th>
<th>Topic</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March to May</td>
<td>Basics of Ophthalmology</td>
<td>Prof. Md. Shafiqul Islam Dr. Md. Abdul Khaleque Associate Professor</td>
</tr>
<tr>
<td>2</td>
<td>June to August</td>
<td>Epidemiology/Biostat.</td>
<td>BSMMU</td>
</tr>
<tr>
<td>3</td>
<td>Sept. to Nov.</td>
<td>Oculoplasty</td>
<td>Dr. S.A Wadud Associate Professor Dr. Md. Sanwar Hossain Assistant Professor</td>
</tr>
<tr>
<td>4</td>
<td>Dec. to Feb.</td>
<td>Glaucoma</td>
<td>Prof. Md. Nazneen Khan Assistant Professor</td>
</tr>
<tr>
<td>5</td>
<td>March to May</td>
<td>Cornea</td>
<td>Prof. Md. Shafuddin Ahmed Dr. Shish Rahman Assistant Professor</td>
</tr>
<tr>
<td>6</td>
<td>June to August</td>
<td>Paediatric Ophthalmology</td>
<td>Prof. Md. Shafuddin Ahmed Dr. Kazi Nilufar Moly Assistant Professor</td>
</tr>
<tr>
<td>7</td>
<td>Sept. to Nov.</td>
<td>Anterior Segment & Refractive Surgery</td>
<td>Dr. Zafar Khaled Associate Professor Dr. Md. Sanwar Hossain Assistant Professor</td>
</tr>
<tr>
<td>8</td>
<td>Dec. to Feb.</td>
<td>Neuro-ophthalmology</td>
<td>Dr. Md. Abdul Khaleque Associate Professor Dr. Md. Showkat Kabir Assistant Professor</td>
</tr>
<tr>
<td>9</td>
<td>March to May</td>
<td>Uvea</td>
<td>Prof. Md. Shabeena Huda Assistant Professor</td>
</tr>
<tr>
<td>10</td>
<td>Jun to Aug.</td>
<td>Vitreo-retinal</td>
<td>Prof. Md. Shafiqul Islam Dr. M.G Faruk Hossain Assistant Professor</td>
</tr>
<tr>
<td>11</td>
<td>Sept. to Nov.</td>
<td>CEITC, Chittagong</td>
<td>CEITC, Chittagong</td>
</tr>
</tbody>
</table>

6. Record of Training:

The evidence required to confirm progress through training includes:

- Details of the training rotations, the training plan agreed with weekly timetables and duty rosters and numbers of practical procedures and outcomes.
- Confirmations of attendance at events in the educational programme, at departmental and inter-departmental meetings and other educational events.
- Confirmation (certificates) of attendance at subject-based/skills-training/instructional courses.
- Recorded attendance at conference and meetings.
• A properly completed logbook with entries capable of testifying to the training objectives which have been attained and the standard of performance achieved.
• CME activity.
• Supervisor’s reports on Observed performance (in the workplace) : of duties, practical procedures, of presentations made and teaching activity: of advising and working with others, of standards of case notes, correspondence and communication with others.

6.1 : Logbook :
Residents are required to maintain a logbook in which entries of academic/professional work done during the period of training should be made on a daily basis, and signed by the supervisor. Completed and duly certified logbook will form a part of the application for appearing in Phase Final Examinations.

7. Research :
Development of research competencies forms an important part of the Residency Programme curriculum as they are an essential set of skills for effective clinical practice. Undertaking research helps to develop critical thinking and the ability to review medical literature. Every Resident shall carry out work on an assigned research project under the guidance of a recognized supervisor, the project shall be written and submitted in the form of a Thesis/Research Report.

8. Assessment :
The assessment for certification of the MS degree of the University is comprehensive, integrated and phase-centered attempting to identify attributes expected of specialists for independent practice and lifelong learning and covers cognitive, psychomotor and affective domains. It keeps strict reference to the components, the contents, the competencies and the criteria laid down in the curriculum. Assessment includes both Formative Assessment and Summative (Phase final) Examinations.

8.1. Formative Assessment :
Formative assessment will be conducted throughout the training phases. It will be carried out for tracking the progress of residents, providing feedback, and preparing them for final assessment (Phase completion exams).

There will be Continuous (day-to-day) and Periodic type of formative assessment.

• Continuous (day-to-day) formative assessment in classroom and workplace settings provides guide to a residents learning and a faculties teaching/learning strategies to ensure formative lesson/training outcomes.
• Periodic formative assessment is quasi-formal and is directed to assessing the outcome of a block placement or academic module completion. It is held at the end of Block Placement and Academic Module Completion. The contents of such examinations include Block Units of the Training Curriculum and Academic Module Units of the Academic Curriculum.
End of Block Assessment (EBA) : End of Block Assessment (EBA) is a periodic formative assessment and is undertaken after completion of each training block, assessing knowledge, skills and attitude of the residents. Components of EBA are written examination, Structured clinical Assessment (SCA), medical record review, and logbook assessment. Unsatisfactory block training must be satisfactorily completed by undergoing further training for the block to be eligible for appearing in the next phase complete examination.

- Formative assessment for Academic modules for Biostatics and Research Methodology and Medical Education is done in the first nine months of Phase B training Residents getting unsatisfactory grade must achieve satisfactory grade by appearing the re-evaluation examination before sitting for the Phase B Final Examination for certification.

8.2. Summative Examination :

The Phase-B Final Examination can be undertaken only after passing the Phase-A Final Examination and after successful completion of Phase-B Training. The Phase-B Final Examination is considered as the exit examination.

Phase Final examinations will have following components :
- Written examination
- Clinical examination
 - Long case (1)
 - Short cases (4)
 - SCA (12 Stations)
- Oral examination
- Thesis Evaluation

9. Supervision and Training Monitoring :

Training should incorporate the principle of gradually increasing responsibility and provide each trainee with a sufficient scope, volume and variety of experience in a range of settings that include inpatients, outpatients, emergency and intensive care. All elements of work in training rotation must be supervised with the level of supervision varying depending on the experience of the trainee and the clinical exposure. Outpatient and referral supervision must routinely include the opportunity to personally discuss all cases. As training progresses the trainee should have the opportunity for increasing autonomy, consistent with safe and effective care for the patient. Trainees will at all times have a named Supervisor, responsible for overseeing their education.

Supervisors are responsible for supervision of learning throughout the program to ensure patient and / or laboratory safety, service delivery as well as the progress of the resident with learning and performance. They set the lesson plans based on the curriculum, undertake appraisal, review progress against the curriculum, give feedback on both formative and summative assessments as well as sign the logbook and portfolio. The residents are made aware of their limitations and are encouraged to seek advice and receive help at all times.

The Course Coordinator of each department coordinates all training and academic activities of the programme in collaboration with the Course Manager. The Course Director of each faculty directs, guides and manages curricular activities under his / her jurisdiction and is the person to be reported to for all events and performances of the residents and the supervisors.
10. Curriculum Implementation, Review and Updating:

Both Supervisors and Residents are expected to have a good knowledge of the curriculum and should use it as a guide for their training programme.

Since Community Ophthalmology has historically been a rapidly changing specialty, the need for review and updating of curriculum is evident. The Curriculum is specifically designed to guide an educational process and will continue to be the subject of active redrafting, to reflect changes in both Community Ophthalmology and educational theory and practice. Residents and Supervisors are encouraged to discuss the curriculum and to feedback on content and issue regarding implementation at Residency Course Director. Review will be time-tabled to occur annually for any minor changes to the curriculum. The Curriculum will be reviewed with input from the various subspecialties of Community Ophthalmology.

Basic, Standard, and Advanced Levels of the Curriculum

The suggested curriculum in all chapters is designed to serve as a content outline for a fund of knowledge. The learning objectives are designed to emphasize recall of information understanding and application of basic sciences (e.g., anatomy, physiology, bio-chemistry, embryology, pharmacology), application of pathogenetic mechanisms to clinical problems, ordering and interpreting clinical, laboratory, imaging information, development of a differential diagnosis, implementation of a reasonable and appropriate therapeutic medical and/or surgical plan, and anticipation, recognition, and treatment of complications. This curriculum is not designed to be all-inclusive, and individual programs should modify and apply the content as deemed appropriate to meet local, regional, and national priorities. It is intended solely as a guideline for the training of community ophthalmic specialists.

PG year 1 (Basic level)
PG year 2 (Standard level)
PG year 3 (Advanced level)

Course Content (Phase B) Community Ophthalmology

PG Y 1 Basic level

- Epidemiology of Blinding Eye Diseases
- Skills for Field Projects in Eye Care
- Eye Care Programmes
- Basic Epidemiology
- Basic Statistics for Public Health Policy
- Introduction to Health Economics

PG Y 2 Standard level

- Childhood Eye Disease and Ocular Infections
- Non-communicable Eye Disease
• How to Plan and Implement a VISION 2020: The Right to Sight project
• Skills, Resources and Technology for VISION 2020: The Right to Sight

PG Y 3 Advanced level

• Applying Public Health Principles in Developing Countries; Proposal Development.
• Analysing Survey & Population Data; Health Systems; Sociological Approaches to Health.

Optics

General Educational Objectives:
Understand the principles, concepts, instruments and methods of optics outlined below and be able to apply them in clinical practices.

Basic Level Goals-PGY-1

A. Physical optics
1. Properties of light
 a) Electromagnetic spectrum
 b) Wave theory
 c) Photon-particle theory
2. Diffraction
3. Interference and coherence
4. Resolution
5. Polarization
6. Scattering
7. Transmission and absorption
8. Photometry
9. Lasers
10. Illumination
11. Image quality
12. Brightness and radiance
13. Light propagation-optical media and refractive index

B. Geometric optics
1. Reflection (mirrors)
 a) Laws of reflection
 b) Reflection at a plane surface (image and field of a plane mirror)
 c) Images and objects as light sources
 d) Images and objects as light sources
 e) Refractive index
 f) Multiple lens system
2. Refraction
 a) Laws of refraction (Snell’s law)
 i) Passage of light from one medium to another
 ii) Absolute index of refraction
 iii) Total internal reflection
b) Refraction at a plane surface
c) Refraction at curved surface
d) Critical angle and total internal reflection
e) Image jump and displacement

3. Prisms
a) Definition
b) Notation of prisms (e.g. prism diopters)
c) Uses in ophthalmology (diagnostic and therapeutic)
d) Types of prisms (plane, parallel, plate)
e) Prentice’s rule
f) Fresnel prism
g) Refraction of light through a prism
h) Thin prisms
i) Prismatic effect of lenses

4. Spherical lenses
a) Cardinal points
b) Thin lens formula
c) Thick lens formula
d) Formation of the image
e) Vergence of light (diopter, convergence, divergence, vergence formula)
f) Concave and convex
g) Magnification (linear, angular, relative size, electronic)
h) Spherical decentration and prism power
i) Lens form
j) Binocular balancing
k) Refracting the basic low vision patient

5. Astigmatic lenses
a) Cylindrical lenses
i) Sphero-cylinder lenses and surfaces
ii) Cross cylinders (e.g. Jackson cross cylinder)
b) Maddox rod
c) Toric lenses
d) Conoid of Sturm

6. Notation of lenses
a) Spectacle prescribing
b) Simple transposition
c) Toric transposition

7. Identification of unknown lenses
a) Neutralization
b) Focimeter
c) Geneva lens measure

8. Aberrations of lenses
a) Correction of aberrations relevant to the eye (spherical, coma, astigmatism, distortion, pantoscopic tilt)
b) Duochrome test

9. Lens materials
C. **Clinical optics**

1. Optics of the eye
2. Transmittance of light by the optic media
3. Schematic and reduced eye
4. Pupillary response and its effect on the resolution of the optical system (Styles-Crawford effect)
5. Visual acuity
 a) Distance and near acuity measurement
 b) Minimal (visible, perceptible, separable, legible)
 c) Vernier acuity
6. Contrast sensitivity
7. Catoptric images
8. Emmetropia
9. Accommodation
10. Purkinje shift
11. Pinhole
12. Ametropia
 a) Myopia
 b) Hypermetropia (hyperopia)
 c) Astigmatism
 d) Anisometropia
 e) Aniseikonia (Knapp’s rule)
 f) Aphakia
 g) Optical parameters affecting retinal image size
13. Accommodative problems
 a) Insufficiency
 b) Excess
 c) AC/A ratio
14. Refractive errors
 a) Prevalence
 b) Inheritance
 c) Changes with age
 d) Surgically induced
15. Correction of ametropia
 a) Spectacle lenses
 b) Contact lenses
 c) Intraocular lenses
 d) Principles of refractive surgery
16. Problems of spectacles in aphakia
17. Effect of spectacles and contact lens correction on accommodation and convergence (amplitude, near point, far point)
18. Effective power of lenses
20. Spectacle magnification
21. Calculation of intraocular lens power
22. Presbyopia (measuring for near adds)
23. Low vision aids
a) High reading addition
b) Magnifying lenses
c) Telescopic aids - Galilean telescope, Keplerian telescope

D. Clinical refraction
1. Retinoscopy
2. Subjective refraction
3. Measurement of back vertex distance (BVD)
4. Muscle balance tests
5. Accommodative power
6. Measurement of interpupillary distance (IPD)
7. Decentration of lenses and prismatic effect
8. Best form lens
9. Prescribing multifocal lenses
10. Prescribing for children
11. Cycloplegic refraction

E. Instruments and tests
1. Direct ophthalmoscope
2. Indirect ophthalmoscope
3. Retinoscope
4. Focimeter
5. Simple magnifying glass (loupe)
6. Lensmeter
7. Glare and contrast testing
8. Potential acuity meter
9. Automated refractor
10. Slit lamp bio-microscope (including methods of examination)
11. Stereo tests
12. Corneal topographic measurements (placido disc, keratometer, automated corneal topography)
13. Applanation tonometer
14. Specular microscope
15. Operating microscope
16. Zoom lens principle
17. Corneal pachymeter
18. Lens screen/Hess chart
19. Synoptophore
20. Lenses used for fundus biomicroscopy (panfunduscope, Goldmann lens, Hruby lens, 90 diopter lens, etc)
21. Fundus camera
22. Gonioscope
23. Tonometers
24. Color vision tests (Ishihara color plates; Hardy-Rand-Rittler plates, Farnsworth-Munsell testing)

Standard Level Goal: PGY - 2
Improve proficiency in Basic Level skills
Advanced Level Goals: PGY - 3
Apply, at the highest level of understanding, the relevant optics information in the following situations:

1. Refraction and prescribing of spectacles and contact lenses.
2. Intraocular lens calculation.
3. Cataract surgery.
4. Use of prisms for diplopia.
5. Low vision aid prescribing.

III. Retinoscopy and Refraction
General Educational Objectives:

1. Identify the principles and indications for retinoscopy.
2. Perform the technique of retinoscopy.
3. Identify media opacities with retinoscopy.
4. Perform an integrated refraction based upon retinoscopic results.

Basic Level Goals: PGY - 1

1. Describe the major types of refractive errors.
2. Describe basic ophthalmic optics and optical principles of refraction and retinoscopy.
3. Perform retinoscopy for detecting simple refractive errors.
4. Describe the indications for and use trial lenses or a phoropter for simple refractive error.
5. Perform objective and subjective refraction techniques for simple refractive error.
6. Perform elementary refraction techniques (e.g. for myopia, hyperopia, near-vision add).
7. Describe the basic principles of a keratometer.

Standard Level Goals: PGY - 2

1. Describe more complex types of refractive errors, including postoperative refractive errors.
2. Perform more advanced refraction techniques (e.g. astigmatism, complex refractions, asymmetric accommodative add).
3. Describe the more advanced ophthalmic optics and optical principles of refraction and retinoscopy (e.g. postkeratoplasty, post-cataract extraction).
4. Perform objective and subjective refraction techniques for more complex refractive errors, including astigmatism and postoperative refractive error.
5. Perform more advanced techniques of retinoscopy for detecting simple and complex refractive error.
6. Describe and use more advanced techniques using trial lenses or the phoropter for more complex refractive errors, including modification and refinement of subjective manifest refractive error and more complex refractive errors (e.g., advanced and irregular astigmatism, vertex distance).
7. Use the keratometer for detection of more advanced refractive error.

Advanced Level Goals: PGY - 3
1. Describe the most complex types of refractive errors, including postoperative refractive errors, postkeratoplasty and refractive surgery.
2. Perform the most advanced refraction techniques (e.g. irregular astigmatism, pre- and post-refractive surgery).
3. Describe the most advanced ophthalmic optics and optical principles of refraction and retinoscopy, including higher order aberrations.
4. Utilize the most advanced ophthalmic optics and optical principles for refraction and retinoscopy, including higher order aberrations.
5. Perform objective and subjective refraction techniques in the most complex refractive error, including astigmatism and postoperative refractive error.
6. Perform the most advanced techniques using trial lenses or the phoropter for more complex refractive errors, including motivation and refinement of subjective manifest refractive error, cycloplegic retinoscopy and refraction and post-cycloplegic refraction, irregular astigmatism, post-keratoplasty and refractive surgery cases.
7. Use the keratometer for detection of subtle or complex advanced refractive error.
8. Use more advanced refraction instruments and techniques (e.g. distometer, automated refractor, automated corneal topography).

IV. Cataract and Lens

General Educational Objectives:
1. Describe the evaluation and management, indications for, and intraoperative and postoperative complications of cataract surgery and related anterior segment procedures.
2. Perform the complete preoperative ophthalmologic examination of cataract patients.
3. Formulate the differential diagnoses of cataract and evaluate the normal and abnormal lens.
5. Develop and exercise clinical and ethical decision-making in cataract patients.
6. Develop good patient communication techniques regarding cataract surgery.
7. Perform routine and advanced cataract surgery and intraocular lens (IOL) placement.
8. Manage basic and advanced clinical and surgical cataract problems.
10. Work effectively as a member of the medical care team.
11. Develop teaching skills about cataract for instructing junior trainees and students.

Basic Level Goals: PHY - 1

A. Cognitive Skills
1. Identify the most common causes and types of cataract (e.g. anterior polar, cortical nuclear sclerotic, posterior sub-capsular).
2. List the basic history and examination steps for preperative cataract evaluation.
3. Describe the steps in cataract surgical procedures.
4. Define the elementary refraction or contact lens fitting techniques to obtain best corrected vision prior to considering cataract extraction.
5. Describe the major etiologies of dislocated or Subluxated lens (e.g. trauma, Marfan’s syndrome, homocystinuría, Weill-Marchesani syndrome, syphilitis).
6. Familiarity with the techniques of intracapsular cataract extraction, extracapsular cataract extraction, and phacoemulsification.
7. Describe the following
a) Basic ophthalmic optics as related to cataract.
b) Types of refractive error in cataract.
c) Retinoscopy techniques for cataract.
d) Subjective refraction techniques for cataract patients.
e) Types of IOLs; IOL power calculation.

8. Identify and describe the principles and mechanisms of the following instruments in the evaluation of cataract:
 a) Lensometer.
 b) Autorefractor.
 c) Retinoscope.
 d) Phoropter
 e) Keratometer
 f) Slit lamp biomicroscope
 g) Glare and contrast testing devices
 h) Potential acuity meter

B. Technical/Surgical Skills
1. Perform basic slit lamp bio-microscopy, retinoscopy and ophthalmoscopy.
2. Evaluate and classify common types of lens opacities.
3. Perform subjective refraction techniques and retinoscopy in patients with cataract.
4. Perform direct and indirect ophthalmoscopy pre-and post-cataract surgery.
5. Perform basic steps of cataract surgery (e.g. incision, wound closure) in the practice lab.
6. Assist at cataract surgery and perform patient preparation, sterile draping and anesthesia.
7. Perform the following steps of cataract surgery in the practice lab or under direct supervision, including any or all of the following:
 a) Wound construction
 b) Anterior capsulotomy/capsulorhexis
 c) Instillation and removal of viscoelastics
 d) Extracapsular and phacoemulsification techniques (e.g. sculpting, divide & conquer, phaco chop)
 e) Irrigation and aspiration
 f) Cortical clean-up
 g) IOL implantation (e.g. anterior and posterior)

Standard Level Goal: PGY - 2
A. Cognitive Skills
1. Describe the less common causes of lens abnormalities (e.g. spherophakia, lenticous, ectopia lentis).
2. Describe the preoperative evaluation of the cataract patient, including:
 a) The systemic diseases of interest or relevance to cataract surgery.
 b) The relationship of external and corneal diseases of relevance to cataract and cataract surgery (e.g. lid abnormalities, dry eye).
 c) The relationships of glaucoma, uveitis, and capsular opacities related to cataract surgery.
3. Describe glare analysis testing for cataract surgery.
4. Describe the use of A and B-scan ultrasonography in cataract surgery.
5. Describe the instruments and techniques of cataract extraction, including extracapsular surgery and phacoemulsification (e.g. trouble-shooting the phacoemulsification machine, altering the machine parameters).
6. Describe the types, indications and techniques of anesthesia for cataract surgery (e.g. topical, local, general).
7. Describe indications, techniques and complications of surgical procedures, including:
 a) Extracapsular surgery
 b) Intracapsular surgery
 c) Phacoemulsification
 d) Paracentesis
 e) IOL placement
8. Describe history and techniques of basic IOL implantation.
9. Correlate the level of visual acuity with the lens or capsular opacities.
10. Describe the common complications of cataract and anterior segment surgery (e.g. intraocular pressure elevation, hyphema, endophthalmitis, cystoid macular edema, retinal detachment, intraocular lens dislocation, lensinduced glaucoma and uveitis).
11. Describe the indications for, principles of and techniques of YAG laser capsulotomy.

B. Technical/Surgical Skills
1. Perform local injections of corticosteroids, antibiotics and anesthetics.
2. Implement the basic preparatory procedures for cataract surgery (e.g. obtaining informed consent, identification of instruments, sterile technique, gloving and gowning, prep and drape and other preoperative preparation).
3. Use the operating microscope for basic cataract surgery.
4. Perform extracapsular surgery in a practice setting (e.g. animal or practice lab) and then in the operating room under supervision, including mastery of the following skills:
 a) Wound construction
 b) Anterior capsulotomy/capsulorhexis
 c) Instillation and removal of viscoelastics
 d) Extracapsular technique
 e) Beginning phacoemulsification techniques (e.g. sculpting, divide & conquer, phaco chop)
 f) Irrigation and aspiration
 g) Cortical clean-up
 h) IOL implantation (e.g anterior and posterior, special IOLs)
5. Perform paracentesis of the anterior chamber.
6. Perform the appropriate steps in cataract surgery, assist in cataract surgery and perform more advanced steps in patient preparation and anesthesia.
7. Describe the more advanced applications of viscoelastics in surgery (e.g. control of iris prolapse, elevation of dropped nucleus, viscodissection, aspiration of residual/retained viscoelastic).
8. Perform basic postoperative evaluation of the cataract patient.
9. Recognize and refer or treat common postoperative complications of cataract surgery (e.g endophthalmitis, elevated intraocular pressure, cystoid macular edema, wound leak, uveitis)
Advanced Level Goals : PHY - 3

A. Cognitive skills
1. Define the more complex indications for cataract surgery (e.g. better view of posterior segment), describe the performance of and describe the complications of more advanced anterior segment surgery (e.g. pseudoexfoliation, small pupils, mature cataract, hard nucleus, black cataract, post-traumatic, zonular dehiscence), including more advanced procedures (e.g. secondary IOLs and indication for specialized IOLs, capsular tension rings, iris hooks, use of indocyanine green staining of the anterior capsule).
2. Describe the instruments and techniques of cataract extraction, including extracapsular surgery and phacoemulsification (e.g. trouble-shooting the phacoemulsification machine, altering the machine parameters).
3. Describe the indications for, techniques of and complication of cataract extraction in the context of the subspeciality disciplines of glaucoma (e.g. combined cataract and glaucoma procedures, glaucoma in cataractous eyes, cataract surgery in patients with prior glaucoma surgery), retina (e.g. cataract surgery in patients with scleral buckles or prior vitrectomy), cornea (e.g. cataract extraction in patients with corneal opacities), ophthalmic plastic surgery (e.g. ptosis following cataract surgery) and refractive surgery (e.g. cataract surgery in eyes that have undergone refractive surgery).
4. Independently evaluate complications of cataract and IOL implant surgery (e.g. rare cases may require this procedure, or patients may have has the procedure performed previously).
5. Understand indications for and technique of intracapsular surgery (e.g. rare cases may require this procedure, or patients may have has the procedure performed previously).
6. Describe indications for and instrumentation and techniques used to implant foldable and non-foldable IOLs.
7. Describe the evaluation and management of common and uncommon caused of postoperative endophthalmitis.
8. Perform repositioning, removal, or exchange of IOLs.
9. Assist in the teaching and supervision of basic and stand and level learners (i.e. first and second year residents).
10. Describe the government and hospital regulations that apply to cataract surgery.

B. Technical/Surgical Skills
1. Describe the principles, indications for mechanics of and performance of A-scan ultrasonography and calculation of IOL power.
2. Perform phacoemulsification in a practice setting (e.g. animal or practice lab) and then in the operating room, including mastery of the following skills:
 a) Wound construction.
 b) Anterior capsulotomy/capsulorrhexis.
 c) Viscoelastics.
 d) Intracapsular, extracapsular and phacoemulsification techniques (e.g. sculpting, divide & conquer, phaco chop, stop and chop).
 e) Instrumentation and techniques of irrigation and aspiration.
 f) IOL implantation (e.g. anterior and posterior, special IOLs).
 g) IOL repositioning, removal or exchange.
3. Perform implantation of foldable and non-foldable IOLs.
4. Perform intraoperative and postoperative management of any event that may occur during or as a result of cataract surgery, including:
 a) Vitreous loss.
 b) Capsular rupture.
 c) Anterior or posterior segment bleeding.
 d) Positive posterior pressure.
 e) Choroidal detachments.
 f) Expulsive hemorrhage.
 g) Loss of anesthesia.
 h) Elevated intraocular pressure.
 i) Use of topical and systemic medications.
 j) Astigmatism.
 k) Postoperative refraction (simple and complex).
 l) Corneal edema.
 m) Wound dehiscence.
 n) Hyphema.
 o) Residual cortex.
 p) Dropped uncleus.
 q) Uveitis.
 r) Cystoid macular edema (CME)
 s) Elevated intraocular pressure and glaucoma.
 t) Postoperative early and late intraocular infection.

V. Contact Lens

Basic Level Goals : PGY - 1

A. General Educational Objectives
 1. Perform a basic contact lens (CL) history and examination and be aware of additional basic tests and questions that are required for IL patients with more complex needs.
 2. Perform the techniques of retinoscopy, refraction and over refraction in the routine CL patients.
 3. Describe the optics of the soft contact lens and hard contact lens (e.g. rigid gas permeable CL); base curve changes, the lacrimal lens, and the optic zone.
 4. Describe conversion of a spectacle prescription (Rx) to a CL Rx. including method of converting from plus to minus cylinder.
 5. Describe basic CL design, using appropriate terminology.
 6. Describe techniques for and perform basic CL fitting.
 7. Describe selection of CL candidates with non-complex needs.
 8. Use auxiliary CL instruments and tests (e.g. trial set, Fluorescein testing).
 9. Perform CL verification for vision correction, fit, and comfort.
 10. Describe contraindications for contact lens use.

B. Cognitive skills
 1. Describe fundamentals of ophthalmic optics in CL management (e.g. CL choices, techniques for fitting individuals).
 2. List indications for contact lenses in non-complex cases.
 3. Describe CL choices and techniques for fitting individuals with non-complex CL needs.
C. Technical/Surgical Skills
1. Perform advanced retinoscopy techniques in a CL patient.
2. Perform advanced refraction techniques in a CL patient, including diagnostic fitting.
3. Perform techniques to verify and inspect contact lenses.
4. Utilize appropriate teaching skills to instruct patients in the safe insertion, removal and care of contact lenses.

Standard Level Goals: PGY - 2
A. General Educational Objectives
1. Perform a more advanced CL history and examination, employing additional tests and questions appropriate for patients with more complex CL needs (e.g. keratoconus, difficult CL, fittings).
2. Perform retinoscopy and refraction in the CL patients with more complex needs (e.g. keratoconus, postkeratoplasty).
3. Describe the more advanced optics of the soft contact lens (SCL) and hard contact lens (e.g. rigid gas permeable CL); base curve changes, the lacrimal lens, and the optic zone.
4. Describe more advanced CL design (e.g. special lenses and special CL shapes or materials).
5. Describe and perform more advanced CL fitting (e.g. postkeratoplasty).
6. Describe selection of CL candidates with more complex needs (e.g. postsurgical).
7. Use auxiliary CL instruments in patients with more complex needs (e.g. postsurgical topography).
8. Perform CL verification for vision, fit, and comfort in therapeutic CL cases.

B. Cognitive Skills
1. Describe more advanced concepts of ophthalmic optics in CL.
2. Describe indications for more advanced CL (e.g. therapeutic lenses).

C. Technical/Surgical Skills
1. Perform more advanced retinoscopy techniques in a CL patient.
2. Perform more advanced refraction techniques in CL patient, including diagnostic fitting.
3. Perform advanced techniques to verify and inspect contact lenses in patients with complex CL needs.
4. Perform more advanced CL fitting in patients with complex needs (e.g. keratoconus, CL in children, active corneal disease).
5. Describe and use the CL instruments in more complex cases.
6. Describe the more advanced CL complications (e.g. microbial keratitis, sterile corneal infiltrates, preservative toxicity).
7. Perform appropriate CL selection (e.g. material selection, CL modification).
8. Perform corneal topography to fit contact lenses.

Advanced Level Goals: PGY - 3

A. General Educational Objectives
1. Perform the most advanced techniques in CL history and examination and understand what additional tests and questions are needed during the most complex CL examination (e.g. postkeratoplasty, multiple surgery, postrefractive, complex keratoconus fitting, active corneal disease).
2. Perform retinoscopy and refraction in the CL patient with the most complex needs (e.g. keratoglobus, keratoglobus, keratoconus, following open globe repair [e.g. corneal laceration] or multiple keratoplasty).
3. Describe the most advanced optics and applications of soft contact lenses and hard contact lenses (e.g. piggyback CL).
4. Describe the most advanced CL design, using appropriate terminology (e.g. special fittings, special lenses for difficult-to-fit patients).
5. Describe indications for and perform the most advanced CL fitting (e.g. post-multiple keratoplasty or traumatic corneal repair).
6. Describe indications for and apply the most complex CL in special circumstances or for candidates presenting increased level of difficulty (e.g. postsurgical patients, children).
7. Use the auxiliary CL instruments in patients with the most complex needs (e.g. topography, Fluorescein testing, diagnostic lenses).
B. Cognitive Skills
1. Describe the differences among CL material choices.
2. Describe methods of modifying a contact lens to improve comfort, vision or physiological response.
4. Perform and interpret corneal topography in CL fitting.

C. Technical/Surgical Skills
1. Perform CL modification in complex cases.
2. Select the appropriate CL in more complex cases.

VI. Cornea, External Diseases and Refractive Surgery

Basic Level Goals : PGY - 1

A. Cognitive Skills
1. Describe the basic anatomy, embryology, physiology, pathology, microbiology, immunology, genetics, epidemiology and pharmacology of the cornea, conjunctiva, sclera, eyelids, lacrimal apparatus and ocular adnexa.
2. Describe congenital abnormalities of the cornea, sclera, and globe (e.g. Peter’s anomaly, microphthalmos, birth trauma, buphthalmos).
3. Describe characteristic corneal and conjunctival degenerations (e.g. pterygium, pinguecula, senile plaques of the sclera, keratoconus).
4. Recognize the common corneal dystrophies and degenerations (e.g. map-dot-fingerprint dystrophy, Meesman dystrophy, Reis-Buckler’s dystrophy, Francois syndrome, Schnyder’s crystalline dystrophy, congenital hereditary stromal dystrophy, lattice dystrophy, granular dystrophy, macular dystrophy, congenital hereditary endothelial dystrophy, Fuchs dystrophy, posterior polymorphous dystrophy, Salzmann’s degeneration).
5. Recognize the common corneal inflammations and infections (e.g. herper simplex, herpes zoster, syphilis, interstitial keratitis).
6. Understand the fundamentals of corneal optics and refraction (e.g. keratoconus).
7. Describe the fundamental of ocular microbiology and recognize corneal and conjunctival inflammations and infections (e.g. Staphylococcal hypersensitivity, simple microbial keratitis, trachoma, ophthalmia neonatorum, herpes zoster ophthalmicus, herper simplex keratitis and conjunctivitis).
8. Recognize the basic presentations of ocular allergy (e.g. phlyctenules, seasonal hay fever, vernal conjunctivitis, allergic and atopic conjunctivitis, giant papillary conjunctivitis).
9. Recognize and treat lid margin disease (e.g. Staphylococcal blepharitis, meibomian gland dysfunction).
10. Describe the features of, diagnose and treat (or refer) vitamin A deficiency (e.g. Bitot’s spot, dry eye, slowed dark adaptation) and neurotrophic corneal diseases.
11. Describe the basic differential diagnosis of acute and chronic conjunctivitis or “red eye” (e.g. scleritis, episcleritis, conjunctivitis, orbital cellulitis, gonococcal and chamydial conjunctivitis).
12. Describe the basic mechanisms of traumatic and toxic injury to the anterior segment (e.g. alkali burn, lid laceration, orbital fracture etc).
13. Understand the mechanisms of ocular immunology and recognize the external manifestations of anterior segment inflammation (e.g., red eye associated with acute and chronic iritis).
14. Describe the basic principles of ocular pharmacology of anti-infective, anti-inflammatory and immune modulating agents (e.g., indications and contraindications for topical corticosteroids, non-steroidal anti-inflammatory agents, and antibiotics).

15. Recognize corneal lacerations (perforating and non-perforating), pterygia that may require surgery, corneal and conjunctival foreign bodies.

16. Diagnose and treat corneal exposure (e.g., lubrication, temporary tarsorrhaphy).

17. Describe the epidemiology, differential diagnosis, evaluation and management of common benign and malignant lid lesions, including pigmented lesions of the conjunctiva and lid (e.g., nevi, melanoma, primary acquired melanosisis).

18. Describe the epidemiology, classification, pathology, indications for surgery, and prognosis of common malpositions of the eyelids (e.g., blepharoptosis, trichiasis, distichiasis, essential blepharospasm, entropion, ectropion) and understand their relationship to secondary diseases of the cornea and conjunctiva (e.g., exposure keratopathy).

19. Recognize and describe the treatment for a chemical burn (e.g., types of agents, medical therapy).

20. Recognize and describe the etiologies of hyphema and microhyphema.

21. Describe the etiologies and treatment of superficial punctate keratitis (e.g., dry eye, Thygeson's superficial punctate keratopathy), blepharitis, toxicity, ultraviolet photokeratopathy, contact lens related).

22. Describe the symptoms and signs, testing and evaluation for, and treatment of exposure keratopathy and dry eye (e.g., Schirmer test).

23. Recognize the anterior segment manifestations of systemic diseases (e.g., Wilson's disease) and pharmacologic side effects (e.g., amiodarone vortex keratopathy).

24. Recognize, list the differential diagnosis, and evaluate aniridia and other developmental anterior segment abnormalities (e.g., Axenfeld's, Rieger's, Peter's anomalies and related syndromes).

25. Recognize and treat pyogenic granuloma.

B. Technical/Surgical Skills

1. Perform external examination (illuminated and magnified) and slit lamp biomicroscopy, including drawing of anterior segment findings.

2. Administer topical anesthesia, as well as special topical stains of the cornea (e.g., fluorescein dye and rose bengal).

3. Perform simple tests for dry eye (e.g., Schirmer test).

4. Perform punctal occlusion (temporary or permanent) or insert plugs.

5. Perform simple corneal sensation testing (e.g., cotton tip swab).

6. Perform tonometry (e.g., applanation, tonopen, Schiotz, pneumotonometry).

7. Perform techniques of sampling for viral, bacterial, fungal, and protozoal ocular infections (e.g., corneal scraping and appropriate culture techniques).

8. Perform and interpret simple stains of the cornea and conjunctiva (e.g., culture techniques, culture media, Gram stain, Giemsa stain, calcofluor white, acid fast).

9. Manage corneal epithelial defects (e.g., pressure patching and bandage contact lenses).

10. Perform removal of a conjunctival or corneal foreign body (e.g., rust ring).

11. Perform primary pterygium excision.

13. Perform an isolated corneal laceration repair (e.g., linear laceration not extending to
limbus).

15. Perform a lateral tarsorrhaphy.
16. Incise/drain or remove a primary chalazion/stye.
17. Perform a simple incisional or excisional biopsy of a lid lesion.
18. Perform irrigation of chemical burn to the eye.
19. Treat hyphema and microhyphema (e.g., the complications of increased intraocular pressure and rebleeding)

Standard Level Goals: PGY-2

A. **Cognitive Skills**

1. Describe the more complex anatomy, embryology, physiology, pathology, microbiology, immunology, genetics, epidemiology, and pharmacology of the cornea, conjunctiva, sclera, eyelids, lacrimal apparatus, and ocular adnexa.
2. Describe the more complex congenital abnormalities of the cornea, sclera, and globe (e.g., hamartomas and choristomas).
3. Describe, recognize, evaluate, and treat peripheral corneal thinning (e.g., inflammatory, degenerative, dellen-related, infectious, immunologic).
4. Recognize common conjunctival neoplasms (e.g., benign, malignant tumors).
5. Recognize and treat less common corneal or conjunctival presentations of degenerations (e.g., inflamed, atypical, or recurrent pterygium, band keratopathy).
6. Describe the epidemiology, differential diagnosis, evaluation, and management of Bitot's spots.
7. Describe the differential diagnosis, evaluation, and management of Thygeson's superficial punctate keratopathy.
8. Understand more complex corneal optics and refraction (e.g., irregular astigmatism).
9. Correlate the concordance of the visual acuity with the density of media opacity (e.g., cataract) and evaluate the etiology of discordance between acuity and findings from examination of the media.
10. Describe more complex ocular microbiology and describe the differential diagnosis of more complicated corneal and conjunctival infections (e.g., complex, mixed, or atypical bacterial, fungal, Acanthamoeba, viral, or parasitic keratitis).
11. Describe differential diagnosis, evaluation, and treatment of interstitial keratitis (e.g., syphilis, viral diseases, non-infectious, immunologic, inflammation).
12. Describe more complex differential diagnosis of the “red eye” (e.g., autoimmune and inflammatory disorders causing scleritis, episcleritis, conjunctivitis, orbital cellulitis).
13. Describe key features of trachoma, including epidemiology, clinical features and staging, and its complications (e.g., cicatization), prevention (e.g., facial hygiene), and topical and systemic antibiotic treatment (especially in hyperendemic regions), and surgery (e.g., tarsal rotation).
14. Describe more complex mechanisms of traumatic and toxic injury to the anterior segment (e.g., long-term sequelae of acid and alkali burn, complex lid laceration involving the lacrimal system, full-thickness laceration).
15. Describe the differential diagnosis and the external manifestations of more complex anterior segment inflammation (e.g., acute and chronic iritis with and without systemic disease).
16. Describe the more complex principles of ocular pharmacology of anti-infective, anti-
inflammatory and immune modulating agents (e.g., use of topical nonsteroidal and steroidal agents, topical cyclosporine).

17. Recognize and treat corneal lacerations (perforating and non-perforating).
18. Recognize and treat large, recurrent, or atypical pterygia that may require surgery.
19. Describe and treat corneal and conjunctival foreign bodies.
20. Diagnose and treat severe corneal exposure (e.g., lubrication, temporary tarsorrhaphy)
21. Recognize and treat common and uncommon benign and malignant lid lesions.
22. Recognize and treat common malpositions of the eyelids (e.g., entropion, ectropion, and ptosis) as they apply to secondary corneal disease.
23. Recognize and treat recurrent corneal erosions.
24. Recognize and treat foreign body, animal, and plant substance injuries.
25. Recognize and treat more complex hyphemas (e.g., surgical indications).
26. Recognize, evaluate, and treat chronic conjunctivitis (e.g., chlamydia, trachoma, molluscum contagiosum, Parinaud's oculoglandular syndrome, ocular rosacea).
27. Describe the clinical features, pathology, evaluation, and treatment of ocular cicatricial pemphigoid.
28. Recognize, evaluate, and treat the ocular complications of severe diseases, such as chronic exposure keratopathy, contact dermatitis, and Stevens-Johnson syndrome.
29. Describe the epidemiology, clinical features, pathology, evaluation, and treatment of peripheral corneal thinning or ulceration (e.g., Terrien's marginal degeneration, Mooreen's ulcer, rheumatoid arthritis-related corneal melt).

B. Technical/Surgical Skills
1. Perform more advanced techniques, including keratometry, keratoscopy, endothelial cell count and evaluation, specular microscopy, and pachymetry.
2. Perform stromal micropuncture
3. Perform application of corneal glue.
4. Assist in more complex corneal surgery (e.g., penetrating keratoplasty and phototherapeutic keratectomy).
5. Perform more advanced tests for dry eye (e.g., modified Schirmer tests, assessment of tear break-up time, fluorescein dye testing, rose bengal dye).
6. Perform more complex pterygium excision, including conjunctival grafting.
7. Perform more complex lid laceration repair.
8. Perform more complex lid laceration repair.
9. Perform more complex pterygium excision, including conjunctival grafting.
10. Repair simple lacerations of the lacrimal drainage apparatus (e.g., perform intubations and primary closure).

Advanced Level Goals: PGY-3
A. Cognitive Skills
1. Describe the most complex anatomy, embryology, physiology, histopathology, microbiology, immunology, genetics, epidemiology, and pharmacology of the cornea, conjunctiva, sclera, eyelids, lacrimal apparatus, and ocular adnexa.
2. Describe the most complex and less common congenital abnormalities of the cornea, sclera, and globe (e.g., cornea plana, keratoglobus).
3. Recognize common and uncommon corneal and conjunctival neoplasms, dystrophies and degenerations (e.g., lattice dystrophy).
4. Understand the most complex corneal optics and refraction (e.g., postkeratoplasty).
5. Describe less common and rare ocular infections and describe the differential diagnosis of the most complicated corneal and conjunctival infections (e.g., amoebas, leishmaniasis, nematodes).
6. In non-endemic areas, describe the basic features of onchocerciasis.
7. In endemic areas, define the etiology, vector (e.g., black fly), and incidence, diagnostic features (e.g., microfilariae, keratitis, iritis), diagnosis (e.g., skin snip test), course and prognosis, treatment (e.g., ivermectin, nodulectomy), and prevention (e.g., vector control, environmental and behavioral changes) of oncocerciasis.
8. Describe the most complex differential diagnosis of the "red eye" (e.g., pemphigoid, pemphigus, Stevens Johnson syndrome).
9. Diagnose and treat the most complex traumatic and toxic injuries to the anterior segment (e.g., total lid avulsion, severe alkali burn).
10. Describe the differential diagnosis and the external manifestations of the most complex or uncommon anterior segment inflammations (e.g., syphilitic keratouveitis).
11. Describe the most complex principles of ocular pharmacology of anti-infective, anti-inflammatory and immune modulating agents (e.g., combination therapies of antiviral and anti-inflammatory agents).
12. Recognize and treat complex corneal lacerations (e.g., lacerations extending beyond the limbus).
13. Diagnose and treat the most severe corneal exposure cases (e.g., conjunctival flap).
14. Understand ocular surface transplantation, including conjunctival autograft/flap, amniotic membrane transplantation, limbal stem cell transplantation.
15. Understand the surgical indications (e.g., Fuchs' dystrophy, aphakic/pseudophakic bullous keratopathy), surgical techniques, and recognition and management of postoperative complications (especially immunologically mediated rejection) of corneal transplantation (e.g., penetrating, lamellar).
16. Understand the preoperative assessment, patient selection, surgical management, and postoperative care of refractive surgical techniques, including keratotomy (radial, astigmatic), photoablation (photorefractive, phototherapeutic, LASIK), corneal wedge resection, thermokeratoplasty, intracorneal rings, phakic intraocular lens, and clear lens extraction.

B. Technical/Surgical Skills
1. Perform and interpret the most advanced corneal techniques (e.g., pachymetry, endothelial microscopy, computerized corneal topography).
2. Understand and perform specialized and complicated contact lens fitting (e.g., post-keratoplasty).
3. Perform more complex corneal surgery (e.g., penetrating or lamellar keratoplasty, keratorefractive procedures, and phototherapeutic keratectomy).
4. Repair complex entropion and ectropion.
5. Perform a thin conjunctival flap (e.g., Gunderson flap).
6. Perform other complex conjunctival surgery (e.g., auto-graft, stem cell transplant).
7. Perform basic non-laser refractive surgery techniques (e.g., relaxing keratotomy).
8. Manage and treat more complex neoplasms of the conjunctiva (e.g., carcinoma, melanoma).
VII. Glaucoma

Basic Level Goals: PGY-1

A. Cognitive Skills
 1. Describe the epidemiology and genetics of primary open angle glaucoma (POAG).
 2. Perform evaluation of POAG.
 3. Describe the mechanics of aqueous humor dynamics and the anatomy of the anterior chamber and its angle, and of the ciliary body.
 4. Describe basic tonometry and understand the principles of tonography.
 5. Describe optic nerve and nerve fiber layer anatomy in glaucoma.
 6. Describe fundamentals of perimetry, including kinetic and automated static perimetry.
 7. Describe principles, indications, and basic techniques of gonioscopy, including normal and abnormal findings.
 8. Describe principles of medical management, including indications for and side effects of treatment options (e.g., topical and systemic medications) for simple glaucoma (e.g., POAG, primary angle closure glaucoma).
 9. Describe and recognize normal tension glaucoma (“low tension glaucoma”).
 10. Describe the features of and recognize primary and secondary angle closure glaucoma and aqueous misdirection.
 11. Recognize hypotony and describe the clinical features (e.g., Seidel test for transconjunctival leakage).
 12. List the main results of the major clinical trials in glaucoma (e.g., Glaucoma Laser Trial, Normal Tension Glaucoma Study, and Advanced Glaucoma Intervention Study [see XVIII. Literature and Studies for Review for references]).

B. Technical/Surgical Skills
 1. Perform basic tonometry (e.g., applanation, Schiotz [if applicable], tonopen, airpuff) and recognize the pitfalls and artifacts of the testing.
 2. Perform basic gonioscopy (e.g., recognize angle structures, identify angle closure).
 3. Perform stereo examination of the optic nerve, using 90 diopter or other lens.
 4. Interpret manual (e.g., Goldmann) and automated (e.g., Humphrey, Octopus) visual fields in routine glaucoma.
 5. Perform corneal pachymetry and relate the findings to interpretation of intraocular pressure.

Standard Level Goals: PGY-2

A. Cognitive Skills
 1. Describe the epidemiology and perform screening for routine and more advanced primary and secondary open angle glaucoma.
 2. Describe the treatment of disturbances of aqueous humor dynamics.
 3. Describe the more complex etiologies for, evaluation of, and treatment of glaucoma (e.g., angle recession, inflammation, steroid-induced, pigmentary, pseudoexfoliative, phacoalytic, neovascular, postoperative, malignant, lens particle glaucomas; plateau iris; glaucomatocyclitic crisis; iridocorneal endothelial syndromes; aqueous misdirection).
 4. Describe more advanced tonometric and tonographic (if applicable) methods (e.g.,
diurnal curve).
5. Describe more advanced optic nerve and nerve fiber layer anatomy in primary and secondary glaucoma and recognize typical and atypical features associated with glaucomatous cupping (e.g., rim pallor, rapid progression, central acuity loss, hemiopic or other non-glaucomatous types of visual field loss).
6. Describe more advanced forms of perimetry (e.g., kinetic and automated static visual fields) and perimetry strategies (e.g., threshold testing, supra-threshold testing, special algorithms).
7. Describe the principles, indications, and more advanced anatomic findings and gonioscopic features of primary and secondary glaucomas (e.g., plateau iris, appositional closure).
8. Describe the principles of medical management of more advanced glaucomas (e.g., advanced POAG, secondary open and closed angle glaucomas, normal tension glaucoma).
9. Describe the features of, recognize, and treat primary angle closure glaucoma and aqueous misdirection.
10. Describe the clinical features of, recognize, and treat less common etiologies of ocular hypotony.
11. Describe the results and apply the conclusions to clinical practice of the major clinical trials in glaucoma (e.g., Glaucoma Laser Trial, Normal Tension Glaucoma Study, and Advanced Glaucoma Intervention Study [see more complete list of clinical trial references in section XVIII. Literature and Studies for Review]).
12. Recognize and treat the various adult secondary glaucomas.
13. Describe the features of primary infantile and juvenile glaucomas.
14. Describe and apply specific medical treatments of more advanced glaucoma.
15. Describe the principles of laser treatments of glaucoma (e.g., indications, techniques, and complications, and use of various types of laser energy, spot size, laser wavelengths).
16. Describe the surgical treatment of glaucoma (e.g., trabeculectomy, combined cataract and trabeculectomy, setons, and cyclodestructive procedures, including indications, techniques, and complications).

B. Technical/Surgical Skills
1. Perform YAG laser posterior capsulotomy for uncomplicated posterior capsule opacity.
2. Perform argon or YAG laser peripheral iridotomy for routine angle closure glaucoma.
3. Perform argon laser trabeculoplasty.
4. Perform cyclophotocoagulation.
5. Perform routine first trabeculectomy with or without antimetabolites.
6. Describe and manage a flat anterior chamber.
7. Perform routine revision of filtering blebs.

Advanced Level Goals: PGY-3

A. Cognitive Skills
1. Describe the features of the most complex and most advanced forms of primary and secondary open angle glaucoma.
2. Describe the mechanics of aqueous humor dynamics in the most advanced and
complex etiologies of glaucoma (e.g., angle recession, combined or multifactorial glaucoma, traumatic or inflammatory glaucoma, pigmentary dispersion glaucoma).

3. Apply in clinical practice tonometric and tonographic methods (e.g., diurnal curve) in complicated or atypical cases of glaucoma.

4. Apply the most advanced knowledge of optic nerve and nerve fiber layer anatomy and describe techniques, methods, and tools for analyzing the nerve fiber layer.

5. Recognize and evaluate atypical or multifactorial glaucomatous cupping (e.g., rim pallor).

6. Describe, interpret, and apply the results of the most complex and advanced forms of perimetry, including special kinetic and automated static perimetry strategies (e.g., special algorithms) in atypical or multifactorial glaucoma.

7. Describe the principles and indications, and apply to clinical practice, the findings of gonioscopy in the most complex primary and secondary glaucomas.

8. Describe the principles of medical management of the most advanced and complex glaucoma (e.g., advanced POAG previously treated with medicine, laser or surgery; secondary glaucomas).

9. Describe, recognize, and treat the most advanced cases of primary open angle glaucoma (e.g., monocular patients, repeat surgical cases), normal tension glaucoma, and secondary glaucomas (e.g., inflammatory glaucoma, angle recession).

10. Describe the features of, recognize, and treat the most advanced cases of primary angle closure glaucoma and complex glaucomas (e.g., postoperative cases, secondary angle closure, aqueous misdirection).

11. Describe the clinical features of ocular hypotony, and recognize and treat common and uncommon etiologies (e.g., choroidal detachment, leaking trabeculectomy bleb).

12. Describe the results, apply the conclusions, and critically analyze the major clinical trials in glaucoma (e.g., Glaucoma Laser Trial, Normal Tension Glaucoma Study, and Advanced Glaucoma Intervention Study), as well as describe and use other publications in the management of glaucoma patients (see XVIII. Literature and Studies for Review for references).

13. Recognize and treat uncommon adult secondary glaucomas.

14. Describe the features of and treat or refer the primary infantile and juvenile glaucomas.

15. Describe and apply specific medical treatments in the most complex and most advanced glaucoma cases (e.g., refractory glaucoma, monocular patients, non-compliant patients).

16. Describe the principles, indications, and complications of laser treatment of more advanced or complex glaucoma (repeat procedures).

17. Describe the more advanced surgical treatment of glaucoma: (e.g., trabeculectomy, combined cataract and trabeculectomy, setons, and cyclodestructive procedures, including indications, techniques, and complications).

B. Technical/Surgical Skills

1. Perform YAG or argon laser procedures in glaucoma patients (e.g., monocular patient, repeat laser, vitreous lysis, suture lysis).

2. Perform laser peripheral iridotomy for more advanced glaucoma (e.g., monocular patient, acute angle closure, hazy cornea).

3. Perform laser treatments (e.g., argon laser trabeculoplasty, iridoplasty) for more advanced glaucoma cases (repeat treatments, monocular patient).

4. Perform cyclophotocoagulation for more advanced cases (e.g., prior surgery,
5. Perform routine and repeat trabeculectomy with or without antimetabolites.
6. Describe, manage, and treat surgically, if necessary, a flat anterior chamber.
7. Perform more advanced techniques for the revision of filtering blebs (e.g., failing bleb, leaking bleb).
8. Recognize and treat complications of glaucoma surgery blebs.

VIII. Neuro-Ophthalmology

Basic Level Goals: PGY-1

A. Cognitive Skills
1. Describe the neuro-anatomy of the visual pathways.
2. Describe the neuro-anatomy of the cranial nerves.
3. Describe the pupillary and accommodative neuro-anatomy.
4. Describe ocular motility and related neuronal pathways.
5. Describe the typical features, evaluation, and management of the most common optic neuropathies (e.g., demyelinating optic neuritis, ischemic optic neuropathy [arteritic and non-arteritic], toxic or nutritional optic neuropathy, Leber's hereditary optic neuropathy, ethambutol toxicity, neuroretinitis, and compressive, inflammatory, infiltrative, and traumatic optic neuropathies).
6. Describe the typical features, evaluation, and management of the most common ocular motor neuropathies (e.g., third, fourth, sixth nerve palsy).
7. Describe the typical features of cavernous sinus and superior orbital fissure syndromes (e.g., infectious, vascular, neoplastic, inflammatory etiologies).
8. Describe the typical features, evaluation, and management of the most common causes of nystagmus (e.g., congenital motor and sensory, downbeat, upbeat, gaze-evoked, drug-induced).
9. Describe the typical features, evaluation, and management of the most common pupillary abnormalities (e.g., relative afferent pupillary defect, anisocoria, Horner's syndrome, third nerve palsy, Adie's tonic pupil).
10. Describe the typical features, evaluation, and management of the most common visual field defects (e.g., optic nerve, optic chiasm, optic radiation, occipital cortex).
11. Describe the clinical features, evaluation, and management of ocular myasthenia gravis.
12. Describe the clinical features, evaluation, and management of carotid-cavernous fistula.
13. Describe the differential diagnosis, evaluation and management of congenital optic nerve abnormalities (e.g., optic pit, disc coloboma, papillorenal syndrome, morning glory syndrome, tilted disc, optic nerve hypoplasia, myelinated nerve fiber layer, melanocytoma, disc drusen, Bergmeister's papilla).

B. Technical/Surgical Skills
1. Perform a basic pupillary examination:
 a) Describe indications for and perform basic pharmacologic pupillary testing for Horner's syndrome, pharma- cologic dilation, and Adie's tonic pupil.
 b) List the differential diagnosis of anisocoria (e.g., sympathetic or parasympathetic lesion, "physiologic" or normal).
c) Describe, detect, and quantitate a relative afferent pupillary defect.

d) List the causes for light-near dissociation (e.g., Argyll-Robertson pupils, diabetic neuropathy, tonic pupil).

2. Perform a basic ocular motility examination:
 a) Assess ocular alignment using simple techniques (e.g., Hirschberg test, Krimsky method).
 b) Describe and perform basic cover/uncover testing for tropia.
 c) Describe and perform alternate cover testing for phoria.
 d) Perform simultaneous prism and cover testing.
 e) Perform measurement of deviations with prisms.
 f) Describe the indications for and apply Fresnel and grind-in prisms.
 g) Describe the indications for and perform forced duction and forced generation testing
 h) Perform an assessment of saccade accuracy and pursuit and optokinetic testing.
 i) Perform a measurement of eyelid function (e.g., levator function, lid position).

3. Describe the indications for visual field testing and perform and interpret perimetry studies:
 a) Perform confrontational field testing (static and kinetic, central and peripheral, red and white targets).
 b) Perform and interpret a tangent screen test.
 c) Describe the indications for and perform basic Goldmann perimetry, and interpret results.
 d) Describe the indications for and perform basic automated perimetry, and interpret results.

4. Perform basic direct, indirect, and magnified ophthalmoscopic examination of the optic disc (e.g., recognize optic disc swelling, optic atrophy, neuroretinitis).

5. Describe the anatomy and indications for, order appropriately, and interpret basic radiology studies of the brain and orbits, demonstrating the ability to communicate with radiologists in order to maximize both choice of proper diagnostic test and accuracy of interpretation.

6. Describe the indications for and interpret basic echography of orbits.

Standard Level Goals PGY-2

A. Cognitive Skills

1. Describe typical and atypical features, evaluation, and management of the most common optic neuropathies (e.g., papilledema, optic neuritis, ischemic, inflammatory, infectious, infiltrative, compressive, and hereditary optic neuropathies).

2. Describe typical and atypical features, evaluation, and management of the more complex supranuclear and internuclear palsies and less common ocular motor neuropathies (e.g., progressive supranuclear palsy and internuclear ophthalmoplegia).

3. Describe typical and atypical features, evaluation, and management of the more complex and less common forms of nystagmus (e.g., rebound, convergence, retraction).

4. Describe typical and atypical features, evaluation, and management of the more complex and less common pupillary abnormalities (e.g., light-near dissociation, phar- macologic miosis).
Describe typical and atypical features, evaluation, and management of the more complex and less common visual field defects (e.g., lateral geniculate, monocular temporal crescent).

Describe more advanced aspects of visual field indications, selection, and interpretation (e.g., artifacts of automated perimetry, testing and thresholding strategies).

Describe neuro-ophthalmic aspects of common systemic diseases (e.g., hypertension, diabetes, thyroid disease, myasthenia gravis, temporal arteritis, systemic infections and inflammation).

Describe neuro-ophthalmologic findings in trauma (e.g., traumatic optic neuropathy, traumatic brain injury).

Describe typical features of inherited neuro-ophthalmologic diseases (e.g., Leber's hereditary optic neuropathy, autosomal dominant optic atrophy, spinocerebellar degenerations).

Recognize, evaluate, and treat ocular myasthenia gravis.

B. Technical/Surgical Skills

1. Describe the indications for, administer, and interpret the results of intravenous edrophonium (Tensilon) and Prostigmin tests for myasthenia gravis.

2. Perform a detailed cranial nerve evaluation (e.g., testing of oculomotor, trochlear, trigeminal, and facial nerve function).

3. Describe the more advanced interpretation of neuro-radiologic images (e.g., indications and interpretation of orbital tumors, thyroid eye disease, pituitary adenoma, optic nerve glioma, optic nerve sheath meningioma).

4. Describe the evaluation, management, and specific testing (e.g., stereopsis, mirror test, red-green testing) of patients with "functional" (non-organic) visual loss (e.g., recognize non-organic spiral or tunnel visual fields).

5. Describe the indications for, perform, and list the complications of temporal artery biopsy.

Advanced Level Goals PGY-3

A. Cognitive Skills

1. Describe typical and atypical features, evaluation, and management of the most advanced and least common optic neuropathies (e.g., chronic or recurrent optic neuritis, and posterior ischemic, autoimmune, toxic/nutritional).

2. Describe typical and atypical features, evaluation, and management of the most complex and least common ocular motor neuropathies and their mimics (e.g., progressive supranuclear palsy).

3. Describe typical and atypical features, evaluation, and management of the most complex and least common forms of nystagmus (e.g., surgical treatment options, using the null point in either prism or surgical therapy).

4. Describe typical and atypical features, evaluation, and management of the most advanced and least common pupillary abnormalities (e.g., pupil findings in coma, transient pupillary phenomenon).

5. Describe typical and atypical features, evaluation, and management of the most complex and least common visual field defects (e.g., combination or bilateral lesions, cortical visual impairment).

6. Describe the most advanced aspects of visual field indications, selection, and interpretation (e.g., variability in automated perimetry, application of specific testing...
and thresholding strategies for different patient populations with different neuro-ophthalmic conditions, different testing abilities (e.g., young or old age, mental status, hand-eye coordination, reaction time).

7. Describe, evaluate, and treat the neuro-ophtalmic aspects of systemic diseases (e.g., malignant hypertension, diabetic papillopathy, toxicity of systemic medications, pseudotumor cerebri).

8. Describe, evaluate, and treat the neuro-ophthalmologic manifestations of trauma (e.g., corticosteroid or surgical therapy in traumatic optic neuropathy).

9. Describe, evaluate, and provide appropriate genetic counseling for neuro-ophthalmologic diseases (e.g., Leber's hereditary optic neuropathy, chronic progressive external ophthalmoplegia, von Hippel-Lindau syndrome).

10. Recognize, evaluate, and treat (or refer) more complex forms of nystagmus.

11. Recognize, evaluate, and treat (or refer) transient monocular or binocular visual loss.

B. Technical/Surgical Skills

1. Perform and interpret the results of the intravenous edrophonium (Tensilon) and prostigmine tests for myasthenia gravis, and recognize and treat the complications of the procedures.

2. Perform and interpret the complete cranial nerve evaluation and basic neurologic examination in the context of neuro-ophthalmic localization and diseases.

3. Interpret neuro-radiologic images in neuro-ophthalmology (e.g., interpretation of orbital imaging for orbital pseudotumor and tumors, thyroid eye disease, intracranial imaging modalities and strategies for tumors, aneurysms, infection, inflammation, and ischemia), and appropriately discuss, in advance of testing, the localizing clinico-radiologic features with the neuroradiologist in order to obtain the best study and interpretation of the results.

4. Recognize patients with "functional" visual loss (non-organic visual loss) and provide appropriate counseling and follow-up.

IX. Ophthalmic Histopathology

Basic Level Goals: PGY-1

A. Cognitive Skills

1. Describe basic ocular anatomy and identify the histology of the major structures of the eye (e.g., conjunctiva, sclera, cornea, anterior chamber angle, iris, ciliary body, lens, vitreous, retina, retinal pigment epithelium, choroid, optic nerve).

2. Describe basic pathophysiology of the common disease processes of the eye and identify the major histologic findings of each (e.g., infection, inflammation, neoplasm).

3. Identify the histology of important intraocular and adnexal diseases (e.g., endophthalmitis, retinoblastoma, choroidal melanoma, microbial keratitis).

B. Technical Skills (for an ocular pathology laboratory, as available)

1. Describe appropriate steps in the basic handling and processing of gross specimens in the ocular pathology laboratory (e.g., basic preparation of the specimen) and demonstrate proficiency in these steps in the laboratory.

2. Describe specific information necessary for communication with the pathologist regarding special handling of specimens for special stains or studies.

3. Describe indications for frozen sections in ocular pathology.

4. Perform cutting and gross examination of whole globes.

5. Participate under supervision in the microscopic examination of ophthalmology specimens from active cases.
Standard Level Goals: PGY-2

A. Cognitive Skills
1. Describe more advanced ocular anatomy and identify the histology of the major and minor structures of the eye (e.g., conjunctival glands, normal pigment, common variants).
2. Describe more advanced pathophysiology of the disease processes of the eye and identify the major histologic findings of each (e.g., fungal keratitis, skin and adnexal neoplasms, and less common intraocular tumors).
3. Identify histology of the less common but potentially vision or life threatening intraocular and adnexal diseases (e.g., temporal arteritis, fungal endophthalmitis, extraocular spread of intraocular tumor, metastatic disease to the eye).
4. Describe more advanced techniques in ocular histopathology (e.g., electron microscopy, cytology, immunohistochemistry, flow cytometry, tumor free margins).

B. Technical/Surgical Skills
1. Describe appropriate steps in the more advanced handling and special processing of gross specimens in the ocular pathology laboratory.
2. Describe specific indications for special handling and communicate to the pathologist the necessity for special handling of specimens for special stains or studies (e.g., electron microscopy, immunohistochemistry, flow cytometry, cytology).
3. Describe indications and perform and prepare a biopsy specimen for frozen section in ocular pathology.
4. Prepare a basic histologic specimen for review by the pathologist.
5. Participate as an "at-the-elbow" observer during microscopic examination of active ophthalmology cases and perform microscopic examination of a specimen with and without direct supervision.

Advanced Level Goals: PGY-3

A. Cognitive Skills
1. Describe the most advanced ocular anatomy and identify histology of the major and minor structures of the eye and their less common "normal" variants (e.g., pars plana cysts, iris heterochromia, cobblestone degeneration of the retina).
2. Describe the most advanced, less common, or more complex pathophysiology of the disease processes of the eye and identify major histologic findings of each (e.g., inflammatory pseudotumor, lymphoma, artifacts of processing).
3. Identify the histology of the least common but potentially vision or life threatening intraocular and adnexal diseases (e.g., healed giant cell arteritis, mimics and masqueraders of inflammation or neoplasm, uncommon benign and malignant neoplasms).

B. Technical/Surgical Skills
1. Describe and perform appropriate steps for handling gross or cytologic specimens in the ocular pathology laboratory.
2. Perform preoperative, intraoperative, and postoperative consultation with the pathologist, regarding specific indications for special stains or processing (e.g., orientation of specimen, special handling).
3. Perform and interpret the pathologic report of frozen section in ocular pathology.
4. Perform the preparation of basic and more advanced histologic specimens for review by the pathologist (e.g., simple or special stains or fixation methods).
5. Participate as an “at-the-elbow” observer during the microscopic examination of active ophthalmology cases.
6. Perform microscopic examination of a specimen with and without direct supervision and provide a relevant differential diagnosis.

X. Oculoplastic Surgery and Orbit

Basic Level Goals (PGY-1)

A. Cognitive Skills
1. Describe basic eyelid, lacrimal, and orbital anatomy and physiology (e.g., eyelid, orbicularis, orbital structures, meibomian glands, lacrimal glands, Zeis glands, Whitnall's ligament, Muller's muscle, Lockwood's ligament, canaliculi, puncta, orbital bones, orbital foramina, paranasal sinuses, annulus of Zinn, arterial and venous vascular supply, lymphatics, nerves, extraocular muscles).
2. Describe basic mechanisms and indications for treatment of eyelid, orbital, and lacrimal trauma.
3. Describe epidemiology, clinical features, evaluation, and management of fetal alcohol syndrome.
4. Perform preoperative and postoperative assessment of patients with common oculoplastic disorders.
5. Recognize simple orbital trauma (e.g., orbital foreign body, retrobulbar hemorrhage).
6. Recognize and treat floppy eyelid syndrome.
7. Recognize and treat localized trichiasis.
8. Recognize blepharospasm and hemifacial spasm.
10. Describe the differential diagnosis of lacrimal gland mass (e.g., inflammatory, neoplastic, congenital, infectious).
11. Identify normal orbital anatomy on imaging studies (e.g., magnetic resonance imaging, computed tomography, ultrasound).
13. Describe techniques and complications of minor operating room procedures (e.g., incision and drainage of chalazia, excision of small eyelid lesions).
14. Describe typical features of orbital cellulitis.

B. Technical/Surgical Skills
1. Describe indications for and perform the basic office examination techniques for the most common oculoplastic and orbital abnormalities.
2. Perform the basic assessment of the eyelids, eyebrows, and eyelashes (e.g., eversion, double eversion, margin to reflex distance, lid crease, levator function, eyelid/brow malpositions).
3. Identify indications for and perform the basic lacrimal assessment (e.g., dye testing, punctal dilation, canalicular probing, lacrimal irrigation).
4. Identify indications for and perform the basic assessment of the orbit (e.g., Hertel exophthalmometry, inspection, palpation, auscultation).
5. Identify indications for and perform the basic socket assessment (e.g., types of implants, socket health).
6. Perform minor lid and conjunctival procedures (e.g., removal of benign eyelid skin lesions, chalazion curettage or excision, conjunctival biopsy).
7. Treat complications of minor operating room procedures (e.g., incision and drainage of chalazia, excision of small eyelid lesions).
8. Perform punctal plug insertion or removal.
9. Recognize and treat trichiasis (e.g., epilation, cryotherapy, surgical therapy).
10. Perform a simple enucleation or evisceration under supervision.

Standard Level Goals: PGY-2

A. Cognitive Skills
1. Describe more advanced eyelid, lacrimal, and orbital anatomy and physiology (e.g., lacrimal apparatus, orbital vascular anatomy).
2. Describe the genetics (where known), clinical features, evaluation, and treatment of congenital eyelid deformities (e.g., coloboma, distichiasis, epicanthus, telecanthus, blepharophimosis, ankyloblepharon, epiblepharon, euryblepharon, and Goldenhar syndrome, Treacher-Collins syndrome, Waardenburg syndromes).
3. Describe the clinical features, evaluation and management of congenital orbital deformities (e.g., synophthalmia, anophthalmia, microphthalmia, cryptophthalmia, hypertelorism, hypotelorism).
4. Describe the genetics, clinical features, evaluation, and management of common craniosynostoses and other congenital malformations (e.g., Crouzon and Apert syndromes).
5. Treat (or refer for treatment) congenital eyelid abnormalities (see Basic Level, above).
6. Perform preoperative and postoperative assessment of patients with simple and more serious oculoplastic disorders (e.g., multi-disciplinary procedures).
7. Describe the mechanisms and indications for treatment of more advanced eyelid, orbital, and lacrimal trauma (e.g., full thickness lid laceration, chemical burns to the face).
8. Describe features of, evaluate, and treat more complicated cases of nasolacrimal duct obstruction, canaliculitis, dacrocystitis, acute and chronic dacryoadenitis, presellar cellulitis, and orbital cellulitis.
9. Recognize, evaluate and treat thyroid ophthalmopathy (e.g., epidemiology, symptoms and signs, associated systemic diseases, orbital imaging, differential diagnosis, surgical, medical and radiation indications, side effects of treatment).
10. Recognize, evaluate, and treat orbital inflammatory pseudotumor (e.g., symptoms and signs, orbital imaging, differential diagnosis, biopsy indications, choice of treatments).
11. Recognize, treat, or refer blepharospasm or hemifacial spasm.
12. Recognize less common orbital tumors (e.g., metastatic lesions).

B. Technical/Surgical Skills
1. Describe indications for and perform more advanced examination techniques for less common oculoplastic and orbital abnormalities (e.g., measurement of levator function, orbital ultrasound interpretation).
2. Identify indications for and perform more advanced assessment of eyelids and eyebrows (e.g., hypoglobus, facial asymmetry, brow ptosis).
3. Identify indications for and perform more advanced lacrimal assessment (e.g., interpretation of dye testing, canalicular probing in trauma).
4. Identify indications for and perform more advanced assessment of the orbit (e.g., enophthalmus, interpretation of orbital ultrasound in common conditions).
5. Identify indications for and perform more advanced socket assessment (e.g., extrusion of implants, anophthalmic socket complications).
6. Perform more complicated minor lid procedures (e.g., larger benign skin lesions) or surgery (e.g., recurrent or multiple chalazion).
7. Recognize the indications and complications and perform more complex minor operating room or limited operating room procedures (e.g., incision and drainage of recurrent or larger chalazia, excision of moderate sized benign eye-lid lesions).
8. Recognize and treat orbital trauma (e.g., intraorbital foreign body, retrobulbar hemorrhage, fracture).
9. Identify common orbital pathology (e.g., orbital fractures, orbital tumors) on imaging studies (e.g., magnetic resonance imaging, computed tomography, ultrasound).
10. Treat common presentations of preseptal or orbital cellulitis.
11. Describe, recognize the indications for and complications of, and perform the basic lacrimal procedures below:
 a) Lacrimal drainage testing (irrigation, dye disappearance test).
 b) Lacrimal intubation.
 c) Dacryocystorhinostomy (external).

Advanced Level Goals: PGY-3

A. Cognitive Skills
1. Describe the most advanced eyelid, lacrimal, and orbital anatomy and physiology.
2. Evaluate and treat simple and more advanced eyelid, orbital, and lacrimal trauma (e.g., full thickness lid laceration, chemical burns to the face).
3. Perform preoperative and postoperative assessment and coordination of care of patients with more advanced or complex oculoplastic disorders (e.g., systemically ill patients, multi-disciplinary procedures).
4. Describe the etiology, evaluation, and medical and surgical treatment of the following eyelid diseases:
 a) Complex ectropion (e.g., congenital, paralytic, involutional, cicatricial, mechanical, allergic).
 b) Complex entropion (e.g., involutional, cicatricial, spastic, congenital).
 c) Complex myogenic ptosis (e.g., chronic progressive external ophthalmoplegia).
 d) Complex differential diagnosis for dermatochalasis (e.g., blepharochalasis).
 e) Benign, pre-malignant, or malignant eyelid tumors (e.g., papilloma, keratoacanthoma, seborrheic keratosis, epidermal inclusion cyst, molluscum contagiosum, verruca vulgaris, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, sebaceous cell carcinoma, melanoma).
 f) Single or recurrent inflammatory lesions (e.g., recurrent chalazion or its mimics).
 g) Facial dystonia (e.g., blepharospasm, hemifacial spasm).
 h) Facial nerve palsy with exposure keratopathy (e.g. tarsorrhaphy, gold weights).
 i) Complex lid and orbital trauma cases.
B. Technical/Surgical Skills

1. Describe the indications for and perform more complicated and advanced "in office" examination techniques for less common but important oculoplastic and orbital abnormalities.

2. Perform preoperative and intraoperative assessment of the eyelids and eyebrows (e.g., intraoperative adjustments).

3. Recognize and treat more complex or difficult socket-related problems and complications (e.g., extrusion of implants, anophthalmic socket complications).

4. Perform more complicated lid procedures (e.g., larger benign, recurrent, or multiple skin lesions).

5. Perform more advanced lacrimal assessment (e.g., intra-operative and postoperative testing, more complex trauma to lacrimal system).

6. Describe management of and treat lacrimal system abnormalities, including:
 a) More complex congenital disorders (e.g., canalicular stenosis).
 b) More complex acquired disorders and their treatment (e.g., conjunctivodacryocystorhinostomy with Jones tube).
 c) Complex moderate trauma (e.g., requiring lacrimal intubation).

7. Recognize typical and atypical features and describe the differential diagnosis, clinical features, and treatment of more complicated orbital diseases, including:
 a) More complex orbital infections (e.g., preseptal and orbital cellulitis, mucormycosis, aspergillosis).
 b) Congenital tumors (e.g., dermoid).
 c) Fibro-osseous disorders and tumors (e.g., fibrous dysplasia, osteoma, chondrosarcoma, osteosarcoma, Paget's disease).
 d) Vascular tumors (e.g., capillary hemangioma, cavernous hemangioma, hemangiopericytoma, lymphangiomatosis, Kaposi's sarcoma).
 e) Xanthomatous tumors (e.g., xanthelasma, juvenile xanthogranuloma).
 f) Lacrimal gland tumors (e.g., benign mixed tumor, adenoid cystic carcinoma, malignant mixed tumor, lymphoma).
 g) Neural tumors (e.g., optic nerve glioma/meningioma, neurofibromatosis, neuroblastoma).
 h) Rhabdomyosarcoma.
 i) Orbital pseudotumor.
 j) Lymphoid lesions (e.g., lymphoid hyperplasia, lymphoma, leukemia).
 k) Thyroid-related orbitopathy.
 l) Metastatic tumors (e.g., from breast, lung, prostate, colon, melanoma).
 m) Trauma (e.g., orbital fractures, traumatic optic neuropathy).
 n) Anophthalmic socket ± implant exposure, volume augmentation.

8. Describe, recognize the indications for and complications of, and perform the eyelid procedures listed below.
 a) Basic biopsy techniques.
 b) Lateral tarsal strip.
 c) Specialized lid suture procedures (e.g., Quickert sutures).
 d) Medial spindle.
 e) Retractor reinsertion.
 f) Levator advancement.
 g) Eyelid laceration/margin repair.
h) Tarsorrhaphy.

i) Lateral canthoplasty (canthotomy and cantholysis).

j) Blepharoplasty.

k) Facial nerve palsy ± gold weight placement in the lid.

l) Simple eyelid reconstruction.

m) Orbital approaches and incisions (e.g., Kronlein, Caldwell-Luc, transconjunctival, transnasal).

9. Describe, recognize the indications for and complications of, and perform basic orbital skills and procedures, including:
 a) Anterior orbitotomy for tumor biopsy/excision.
 b) Orbital floor fracture repair.

10. Describe the indications for and interpret CT and MRI scans (e.g., orbital trauma, orbital lesions and tumors).

11. Perform botulinum toxin injections (e.g., blepharo- spasm).

12. Identify more advanced orbital pathology (e.g., complex orbital fractures, orbital tumors) on imaging studies (e.g., magnetic resonance imaging, computed tomography, ultrasound).

XI. Pediatric Ophthalmology and Strabismus
Basic Level Goals: PGY-1

A. Cognitive Skills

1. Describe basic examination techniques for strabismus (e.g., ductions and versions, cover and uncover testing, alternate cover testing, prism cover testing).

2. Describe basic visual development and visual assessment of the pediatric ophthalmology patient (e.g., central, steady, maintained fixation; illiterate E, Allen cards, Landolt C rings).

3. Describe basic anatomy and physiology of strabismus (e.g., innervation of extraocular muscles, primary actions, comitant and incomitant deviations, overaction and underaction, restrictive and paretic saccades and pursuit movements).

4. Describe basic sensory adaptations for binocular vision (e.g., normal and anomalous retinal correspondence, suppression, horopter, Panum's area, fusion, stereopsis).

5. Describe and recognize pseudostrabismus.

6. Describe different etiologies of amblyopia (e.g., deprivation, ametropic, strabismic, anisometropic, organic).

7. Describe etiologies of esotropia (e.g., congenital, comitant and incomitant, accommodative and non-accommodative, decompensated, sensory, neurogenic, myogenic, neuromuscular junction, restrictive, nystagmus blockage syndrome, spasm of the near, monofixation syndrome, consecutive).

8. Describe etiologies of exotropia (e.g., congenital, comitant and incomitant, decompensated, sensory, neurogenic, myogenic, neuromuscular junction, restrictive, basic divergence excess, exophoria, convergence insufficiency).

9. Describe various strabismus patterns (e.g., A or V pat- tern).

10. Describe etiologies, evaluation, and management of vertical strabismus (e.g., neurogenic, myogenic, neuromuscular junction, oblique overaction or underaction, disso- ciated vertical deviation, restrictive).

12. Describe different forms of childhood nystagmus.

13. Describe features, classification, and treatment indications for retinopathy of
14. Describe etiologies and types of pediatric cataract.
15. Describe and recognize ocular findings in child abuse (e.g., retinal hemorrhages) and appropriately refer to child protective services or other authorities.
16. Describe common hereditary or congenital ocular motility or lid syndromes (e.g., Duane's syndrome, Marcus-Gunn jaw-winking, Brown syndrome).
17. Describe typical features of retinoblastoma.
18. Describe basic features of dyslexia.
19. Describe basic evaluation of decreased vision in infants and children (e.g., retinopathy of prematurity, hereditary retinal disorders, congenital glaucoma, measles, vitamin A deficiency).
20. Describe identifiable congenital ocular anomalies (e.g., microphthalmia, persistent fetal vasculature).
21. Describe ocular findings in inherited, metabolic disorders.
 a) Mucopolysaccharidoses (e.g., Hurler syndrome, Scheie syndrome, Hunter syndrome, Sanfilippo syndrome, Morquio syndrome, Sly syndrome)
 b) Lipidoses (e.g., Tay-Sachs disease, Sandhoff, Niemann-Pick, Krabbe's, Gaucher's, Fabry's disease, metachromatic leukodystrophy)
 c) Aminoacidurias (e.g., homocystinuria, cystinosis, Lowe and Zellweger syndromes).
22. Describe ocular findings in chromosomal abnormalities (e.g., trisomy 21; trisomy 13; trisomy 18; deletion of the short arm of chromosome 11; deletion of the long arm of chromosome 13; Cri du Chat syndrome, Turner's syndrome).

B. Technical/Surgical Skills
1. Perform an extraocular muscle examination based on knowledge of the anatomy and physiology of ocular motility.
2. Assess ocular motility using testing of ductions and versions.
3. Apply Hering's and Sherrington's laws.
4. Perform basic measurement of strabismus (e.g., Hirsch-berg test, Krimsky method, cover testing, prism cover testing, simultaneous prism cover testing, alternate cover testing, Parks-Bielchowsky three-step test, Lancaster red-green test, Maddox rod testing, double Maddox rod testing).
5. Perform assessment of vision in the neonate, infant, and child.
6. Recognize and apply in a clinical setting the following skills in the ocular motility examination:
 a) Stereoacuity testing.
 b) Accommodative convergence/accommodation ratio (e.g., heterophoria method, gradient method).
 c) Tests of binocularity and retinal correspondence.
 d) Cycloplegic refraction (retinoscopy).
 e) Anterior and posterior segment examination.
 f) Basic and advanced measurement of strabismus.
 g) Cover test measurement.
 h) Assessment of vision.
 i) Teller acuity cards.
 ii) Fixation preference test.
 iii) Standard subjective visual acuity tests
 iv) Induced tropia test.
7. Assist a primary surgeon in performing extraocular muscle surgery including:
 a) Recession
 b) Resection
 c) Muscle weakening (e.g., tenotomy) and strengthening (e.g., tuck) procedures.
 d) Transposition.
 e) Use of adjustable sutures.

Standard Level Goals: PGY-2

A. Cognitive Skills
1. Describe basic and more advanced strabismus examination techniques (e.g., combined vertical and horizontal prism cover testing, double Maddox rod testing).
2. Describe basic and more advanced visual development and visual assessment of the pediatric ophthalmology patient (e.g., blink to light or threat, measures of fixation and following behavior, objective measures of visual acuity).
3. Describe more advanced anatomy and physiology of strabismus (e.g., torsion, tertiary actions, consecutive deviations).
4. Describe more advanced sensory adaptations (e.g., anomalous head position).
5. Describe basics of binocular sensory testing (e.g., Titmus stereo testing, Randot stereo testing, Worth four-dot, Bagolini lenses, afterimage testing).
6. Describe and recognize different etiologies of amblyopia.
7. Describe and recognize etiologies of esotropia.
8. Describe and recognize etiologies of exotropia.
9. Describe and recognize various strabismus patterns (e.g., A or V pattern).
10. Describe and recognize the etiologies of vertical strabismus.
11. Describe and utilize the non-surgical treatment of strabismus and amblyopia (e.g., patching, atropine penalization, Fresnel and grind-in prism therapy).
12. Describe and recognize the different forms of childhood nystagmus (e.g., sensory, motor, congenital, acquired).
13. Describe and recognize retinopathy of prematurity (e.g., stages, treatment indications).
14. Describe and recognize etiologies and types of pediatric cataract (e.g., congenital, traumatic, hereditary, idio-pathic).
15. Describe and recognize less common hereditary or malformative ocular anomalies and syndromes (e.g., Mobius, Goldenhar syndrome).
16. Describe and recognize typical features of retinoblastoma (e.g., differential diagnosis, evaluation, treatment indications and types).
17. Describe the main features of dyslexia and its relationship to vision.
18. Describe basic evaluation and differential diagnosis of decreased vision in infants and children (e.g., retinal and optic nerve etiologies, amblyopia).
19. Describe recognizable causes of blindness in infants (e.g., albinism, optic nerve hypoplasia, achromatopsia, Leber's congenital amaurosis, retinal dystrophy, congenital optic atrophy).
20. Describe etiology, evaluation, and management of congenital infections (e.g., toxoplasmosis, rubella, cytomegalovirus, syphilis, herpes).
21. Describe and recognize the common causes of pediatric uveitis.
B. **Technical/Surgical Skills**

1. Perform a more advanced extraocular muscle examination based on knowledge of the anatomy and physiology of ocular motility.
2. Assess more advanced ocular motility problems (e.g., bilateral or multiple cranial neuropathy, myasthenia gravis, thyroid eye disease).
3. Apply Hering's and Sherrington's laws in more advanced cases (e.g., pseudoparesis of the contralateral antagonist, enhancement of ptosis in myasthenia gravis).
4. Perform more advanced measurements of strabismus (e.g., double Maddox rod testing, Lancaster red green testing, use of synoptophore or amblyoscope).
5. Perform assessment of vision in more difficult strabismus patients (e.g., uncooperative child, mentally impaired, nonverbal or preverbal).
6. Perform basic extraocular muscle surgery:
 a) Exercise surgical judgement for the indications and contraindications for strabismus surgery.
 b) Perform preoperative assessment, intraoperative techniques, and describe intraoperative and postoperative complications of strabismus surgery.
 c) Perform the following strabismus surgeries:
 i) Recession.
 ii) Resection.
 iii) Muscle weakening (e.g., tenotomy) and strengthening (e.g., tuck) procedures.
 iv) Transposition.
 v) Use of adjustable sutures.
 d) Manage the complications of strabismus surgery (e.g., slipped muscle, anterior segment ischemia).

Advanced Level Goals: PGY-3

A. **Cognitive Skills**

1. Describe and perform the most advanced strabismus examination techniques (e.g., complicated prism cover testing in multiple cranial neuropathies, patients with nystagmus, dissociated vertical deviation, double Maddox rod testing).
2. Perform the most advanced techniques for assessment of visual development in complicated or non-cooperative pediatric ophthalmology patients (e.g., less common objective measures of visual acuity, electrophysiologic testing).
3. Apply the most advanced knowledge of strabismus anatomy and physiology (e.g., spiral of Tillaux, secondary and tertiary actions, spread of comitance) in evaluation of patients.
4. Describe clinical application of the most advanced sensory adaptations (e.g., anomalous head position, anomalous retinal correspondence).
5. Recognize and treat the most complicated etiologies of amblyopia (e.g., refraction non-compliance, patching failures, pharmacologic penalization).
6. Recognize and treat the most complex etiologies of esotropia (e.g., optical, prism-induced, postsurgical/consecutive).
7. Recognize and treat the most complex etiologies of exotropia (e.g., supranuclear, paralytic pontine exotropia, consecutive).
8. Recognize and treat the most complex strabismus patterns (e.g., aberrant...
regeneration, postsurgical, thyroid ophthalmopathy, and myasthenia gravis).

9. Recognize and treat the most complex etiologies of vertical strabismus (e.g., skew deviation, postsurgical, restrictive).

10. Apply non-surgical treatment (e.g., patching, atropine penalization) of more complicated forms of amblyopia (e.g., non-compliant, patching failures).

11. Recognize, evaluate, and treat the most complex forms of childhood nystagmus (e.g., sensory, spasmus nutans, associated with neurologic or systemic diseases).

12. Recognize and treat (or refer for treatment) complex retinopathy of prematurity (e.g., stages, treatment indications, retinal detachment).

13. Recognize and treat (or refer for treatment) uncommon etiologies and types of pediatric cataract (e.g., congenital, traumatic, metabolic, inherited).

14. Recognize and appropriately evaluate the more complex hereditary ocular syndromes (e.g., bilateral Duane syn-drome, Mobius syndrome).

15. Recognize and treat (or refer for treatment) patients with complicated retinoblastoma (e.g., bilateral cases, mono-cular patient, treatment failure, pineal involvement).

16. Recognize and evaluate the less common congenital ocular anomalies (e.g., unusual genetic syndromes).

17. Apply the most advanced principles of binocular vision and amblyopia (e.g., physiology of binocular vision, diplopia, confusion and suppression, normal and abnormal retinal correspondence, classification and characteristics of amblyopia).

18. Recognize and treat complex pediatric retinal diseases (e.g., inherited retinopathies).

19. Recognize and treat complex pediatric glaucoma.

20. Recognize and treat complex pediatric cataract and anterior segment abnormalities (including surgical implications, techniques, and complications).

21. Recognize and treat complex pediatric eyelid disorders (e.g., congenital deformities, lid lacerations, lid tumors).

22. Recognize and treat (or refer) pediatric orbital diseases (e.g., orbital tumors, orbital fractures, rhabdomyosarco-ma, severe congenital orbital malformations).

B. Technical/Surgical Skills

1. Perform more complex extraocular muscle surgery (e.g., vertical and horizontal muscle surgery; reoperations).

2. Describe indications and contraindications for more complex strabismus surgery.

3. Describe and perform the preoperative assessment, intraoperative techniques and describe postoperative complications for more complicated strabismus surgery (e.g., reoperations, slipped muscle).

4. Describe indications for and perform adjustable sutures in more complicated cases (e.g., thyroid ophthalmopathy).

5. Describe and manage more complex complications of strabismus surgery (e.g., globe perforation, endophthalmitis, overcorrection).

XII. Vitreoretinal Diseases

Basic Level Goals: PGY-1

A. Cognitive Skills

1. Describe basic principles of retinal anatomy and physiology (layers of the retina, retinal physiology).

2. Describe fundamentals and demonstrate basic understanding of fluorescein angiography as applied to retinal vascular diseases (e.g., indications, phases of the angiogram).
3. Describe etiologies and mechanisms of retinal detachment.
4. Describe macular anatomy and function and describe typical features of common macular diseases (e.g., age-related macular degeneration, macular hole, macular dystrophies, macular pucker).
5. Describe basic principles of laser photocoagulation.
6. Describe and recognize features of commotio retinae, traumatic choroidal rupture, and Purtscher's retinopathy.
7. Describe common forms of retinal vascular diseases (e.g., branch, hemi- or central retinal vein and artery occlusion).
8. Describe typical features of retinitis pigmentosa.

B. Technical/Surgical Skills
1. Perform direct ophthalmoscopy.
2. Perform indirect ophthalmoscopy.
3. Perform slit lamp biomicroscopy with the Hruby, +78, +90 lenses, 3-mirror contact lens, or other contact lenses (e.g., TransEquator).
4. Interpret basic fluorescein angiography in common retinal disorders (e.g., diabetic retinopathy, cystoid macular edema).

Standard Level Goals: PGY-2
A. Cognitive Skills
1. Describe more advanced retinal anatomy and physiology.
2. Describe more advanced concepts of fluorescein/indo-cyanine green (ICG) angiography as applied to retinal vascular and other diseases (e.g., indications, phases of the angiogram).
3. Describe principles of retinal detachment recognition, various types of retinal detachment (e.g., exudative, rhegmatogenous, tractional), and their evaluation, management, and repair (e.g., identify retinal break).
4. Describe and recognize typical features of less common macular diseases (e.g., parafoveal telangiectasias, cone dystrophies, inherited macular dystrophies, fundus flavimaculatus, toxic maculopathies).
5. Describe indications for and complications of laser photocoagulation.
6. Describe the findings of major studies in retinal diseases, including the following:
 a) Diabetic Retinopathy Study (DRS).
 b) Diabetic Vitrectomy Study (DVS).
 c) Early Treatment of Diabetic Retinopathy Study (ETDRS).
 d) Macular Photocoagulation Study (MPS).
 e) Diabetes Control and Complications Trial (DCCT).
 f) Branch Vein Occlusion Study (BVOS).
 g) Central Vein Occlusion Study (CVOS).
 h) United Kingdom Prospective Diabetes Study (UKPDS).
 i) Age-Related Eye Disease Study (AREDS).
 j) Treatment of Age-Related Macular Degeneration with Photodynamic Therapy Study (TAP).
 k) Treatment of Age-Related Macular Degeneration with Photodynamic Therapy Study (TAP).
7. Describe the fundamentals of, evaluate, and treat (or refer) peripheral retinal diseases and vitreous pathology (e.g., vitreous hemorrhage, retinal breaks).
8. Describe, evaluate, and treat choroidal detachments, uveal effusion syndrome.
9. Identify and evaluate retinoschisis (e.g., juvenile, senile).
10. Diagnose, treat, and recognize the complications of retinopathy of prematurity (e.g., retinal detachment).
11. Diagnose, evaluate, and treat the following retinal vascular diseases:
 a) Arterial and venous obstructions.
 b) Diabetic retinopathy.
 c) Hypertensive retinopathy.
 d) Peripheral retinal vascular occlusive disease.
 e) Acquired retinal vascular diseases.
 f) Ocular ischemic syndrome.
 g) Sickle cell retinopathy.
 h) Retinal pigment epithelial detachment.
12. Describe and recognize common and uncommon macular disorders:
 a) Age-related macular degeneration (ARMD).
 b) Choroidal neovascularization (e.g., ARMD, histoplasmosis).
 c) High myopia.
 d) Macular dystrophies.
 e) Macular pucker (e.g., epiretinal membrane).
 f) Macular holes.
 g) Cystoid macular edema.
 h) Central serous choroidopathy (retinopathy).
 i) Optic pit and secondary serous detachment.
 j) Retinal pigment epithelial detachment.
13. Describe the fundamentals of retinal electrophysiology.
14. Describe, recognize, and evaluate hereditary retinal and choroidal diseases (e.g., gyrate atrophy, choroideremia, retinitis pigmentosa, cone dystrophies, Stargardt's disease, Best's disease, congenital stationary night blindness).
15. Recognize, evaluate, and treat (or refer) retinal and choroidal toxicity (e.g., phenothiazine, hydroxychloroquine/ chloroquine toxicity, tamoxifen).
16. Describe the techniques for retinal detachment repair (e.g., pneumatic retinopexy, scleral buckling, vitrectomy).
17. Describe the basics of surgical vitrectomy (e.g., indications, mechanics, instruments, and technique).
18. Describe the indications for and perform basic laser treatment for diabetic retinopathy (e.g., panretinal photocoagulation, macular grid).
19. Describe the fundamentals of special vitreoretinal techniques:
 a) Macular hole repair.
 b) Epiretinal membrane peeling.
 c) Complex vitrectomy for proliferative vitreoretinopathy.
 d) Use of heavy liquids and intraocular gases (e.g., perfluorocarbons).
20. Describe, evaluate, and treat posterior uveitis syndromes and endophthalmitis.

B. Technical/Surgical Skills

1. Perform indirect ophthalmoscopy with scleral indentation.
2. Perform ophthalmoscopic examination with contact lenses, including panfundusscopic
lenses.
3. Interpret fluorescein and ICG angiography.
4. Describe the indications for and interpret retinal imaging technology (e.g., ocular coherence tomography, retinal thickness analysis).
5. Perform posterior segment photocoagulation.
7. Perform peripheral scatter photocoagulation (panretinal).
8. Perform laser retinopexy (demarcation) for isolated retinal breaks.
9. Describe the indications for and interpret basic electro-physiological tests (e.g., electroretinogram [ERG], electrooculogram [EOG], visual evoked potential [VEP], dark adaptation).
10. Interpret basic ocular imaging techniques (e.g., B-scan echography, nerve fiber layer analysis).
11. Perform fundus drawings of the retina, showing complex vitreoretinal relationships and findings.
12. Perform cryotherapy of retinal holes and other pathology.
13. Perform scleral buckling.
14. Describe indications, techniques, and complications of pars plana vitrectomy and assist in a retinal surgery or perform the procedure under super-vision.

Advanced Level Goals: PGY-3

A. Cognitive Skills
1. Apply in clinical practice the most advanced knowledge of retinal anatomy and physiology (e.g., surgical anatomy).
2. Apply in clinical practice the most advanced concepts of fluorescein/ICG angiography in complex retinal vascular and other diseases (e.g., occult choroidal neovascular membranes, recurrent neovascularization, vascular tumors, diseases of choroid and retinal pigment epithelium).
3. Evaluate, treat, or refer the most complex retinal detachments (e.g., recurrent retinal detachment, proliferative vitreoretinopathy).
4. Evaluate, treat or refer the most complex macular disease (e.g., subfoveal or recurrent neovascular membranes).
5. Describe the indications for laser photocoagulation, including photodynamic therapy for the most complex retinal pathology (e.g., subfoveal neovascular membranes).
6. Describe the findings of the major studies in retinal diseases and describe the indications and exceptions for application to individual patients:
 a) Diabetic Retinopathy Study (DRS).
 b) Diabetic Vitrectomy Study (DVS).
 c) Early Treatment of Diabetic Retinopathy Study (ETDRS).
 d) Macular Photocoagulation Study (MPS).
 e) Diabetes Control and Complications Trial (DCCT).
 f) Branch Vein Occlusion Study (BVOS).
 g) Central Vein Occlusion Study (CVOS).
 h) United Kingdom Prospective Diabetes Study (UKPDS).
 i) Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP; VIP).
7. Apply in clinical practice understanding of the most complex peripheral retinal
diseases and vitreous pathology (e.g., Goldmann-Favre disease, incontinentia pigmenti, familial exudative vitreoretinopathy).

8. Evaluate and treat complications of retinal photocoagulation (e.g., vitreous hemorrhage, chorioretinal anastomoses).

9. Recognize and treat complex retinal detachments (e.g., giant tear).

10. Evaluate, treat or refer the more complex cases of retinopathy of prematurity (e.g., tractional retinal detachment).

11. Evaluate, treat, or refer the most complex forms of retinal vascular diseases:
 a) Combined arterial and venous obstructions.
 b) Advanced diabetic retinopathy.
 c) Advanced hypertensive retinopathy.
 d) Peripheral retinal vascular occlusive disease.
 e) Acquired retinal vascular diseases.

12. Evaluate and treat or refer the uncommon manifestations or presentations of the following macular diseases
 a) Age-related macular degeneration (ARMD)/choroidal neovascularization (e.g., recurrent subfoveal neovascularization).
 b) Uncommon macular dystrophies.
 c) Refractory cystoid macular edema.
 d) Recurrent central serous choroidopathy (retinopathy).
 e) Acute posterior multifocal placoid pigment epitheliopathy (choroidopathy).
 f) Multiple evanescent white dot syndromes.
 g) Serpiginous choroiditis.
 h) Acute zonal outer retinopathy.
 i) Triangular syndrome.
 j) Polypoidal choroidopathy.

13. Apply in clinical practice the more complex retinal electrophysiology (e.g., multifocal electroretinography).

14. Apply in clinical practice the more complex techniques for retinal detachment repair
 a) Repeat scleral buckling.
 b) Pars plana vitrectomy (e.g., diagnostic tap; core vitrectomy, extensive vitrectomy).
 c) Repair of uveal effusion.

15. Apply in clinical practice the more complex principles of surgical management of diabetic retinopathy (e.g., vitrectomy, membrane release).

16. Apply in clinical practice complex vitreoretinal techniques:
 a) Macular hole repair.
 b) Epiretinal membrane peeling.
 c) Complex vitrectomy for proliferative vitreoretinopathy.
 d) Use of heavy liquids.

17. Evaluate, treat, or refer the etiologically more complex or uncommon cases of posterior uveitis (e.g., sympathetic ophthalmia) and endophthalmitis (e.g., endogenous).

B. Technical/Surgical Skills

1. Perform indirect ophthalmoscopy with scleral indentation in complex retinal cases (e.g., multiple holes, documented with detailed retinal drawing).

2. Perform ophthalmoscopic examination with panfunduscopy or other lenses in complex retinal conditions (e.g., giant retinal tears, proliferative vitreoretinopathy).
3. Interpret and apply in clinical practice the results of fluorescein and ICG angiography and optical coherence tomography (OCT) in complex retinal or choroidal pathology (e.g., occult subretinal neovascular membrane).
4. Perform posterior segment photocoagulation in more complicated retinal cases:
 a) Diabetic focal/grid macular treatment (e.g., monocular patient, repeat treatment).
 b) Repeat peripheral scatter photocoagulation (panretinal).
 c) Laser retinopexy (demarcation) of large or multiple breaks; cryotherapy.
5. Interpret and apply in clinical practice electrophysiology (e.g., ERG, EOG, VEP, dark adaptation) in more complicated retinal pathology.
6. Interpret and apply in clinical practice ocular imaging techniques (e.g., B-scan echography) in more complex cases (e.g., choroidal osteoma).
7. Perform detailed fundus drawings of the retina with vitreoretinal relationships in the most complex retinal cases (e.g., recurrent retinal detachment, retinoschisis with and without retinal detachment).
8. Perform laser therapy or cryotherapy of retinal holes and other more complex retinal pathology.

XIII. Uveitis

Basic Level Goals: PGY-1

A. Cognitive Skills
1. Describe basic principles of history taking and examination of patients with uveitis, and related diseases (e.g., scleritis, pemphigus).
2. List signs and symptoms of anterior and posterior uveitis (e.g., red eye, blurred vision, anterior segment cell and flare, vitreous opacities, pars planitis, retinal or choroidal infiltrates).
3. Describe the different types of uveitis (e.g., acute and chronic uveitis, granulomatous and non-granulomatous uveitis, anterior, intermediate, and posterior uveitis).
4. Describe typical features and differential diagnosis of anterior uveitis, including infectious (e.g., bacterial, viral, protozoal, parasite), inflammatory (e.g., sarcoid, HLA-B27-associated, Behcet's disease, collagen vascular disease), neoplastic (masquerade syndromes), postsurgical, post-traumatic, Fuchs' heterochromic uveitis, juvenile rheumatoid arthritis.
5. Describe typical features and differential diagnosis of the following posterior segment uveitis:
 a) Toxoplasmosis
 b) Sarcoidosis.
 c) Pars planitis.
 d) Acute retinal necrosis.
 e) Vogt-Koyanagi-Harada syndrome.
 f) Large cell lymphoma.
 g) Postoperative uveitis.
 h) Endophthalmitis (e.g., postoperative, traumatic, endogenous, fungal, phacoanaphylactic, sympathetic oph-thalmia).
i) Unusual infectious etiologies for uveitis (e.g., human immunodeficiency virus, herpes simplex virus, herpes zoster virus, pneumocystis carinii, Lyme disease).

j) Acquired and congenital ocular syphilis.

k) Cytomegalovirus retinitis.

l) Multiple sclerosis.

B. Technical/Surgical Skills

1. Perform an examination of the anterior and posterior segment for uveitis (e.g., slit lamp biomicroscopy, scleral depression, magnified posterior segment exam, vitreous evaluation for cells, retinal, choroidal, and pars plana evaluations).

2. Describe indications for ancillary testing in the evaluation of uveitis (e.g., fluorescein angiography, ultrasound, laboratory testing, radiologic testing).

Standard Level Goals: PGY-2

A. Cognitive Skills

1. Describe more advanced principles of history taking and examination of patients with uveitis (e.g., review of systems for Wegener's granulomatosis, polyarteritis nodosa, lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, systemic necrotizing vasculitis; evaluation of skin, cardiac, respiratory, renal, pulmonary, musculoskeletal systems).

2. List less common signs and symptoms of anterior and posterior uveitis.

3. List differentiating signs of less common forms of uveitis (e.g., iris nodules, conjunctival ulcer or granuloma).

4. Describe the differential diagnosis of less common forms of uveitis (e.g., chronic uveitis, intermediate uveitis [e.g., pars planitis], and infectious [e.g., Whipple disease, syphilis] or inflammatory posterior uveitis; masquerade syndromes, including large cell lymphoma).

5. Evaluate and treat common causes of anterior and posterior uveitis.

B. Technical/Surgical Skills

1. Perform a directed examination of the anterior and posterior segments for uveitis (e.g., slit lamp biomicroscopy, scleral depression, magnified posterior segment exam, vitreous evaluation for cells).

2. Perform ancillary testing in the evaluation of uveitis (e.g., fluorescein angiography, ultrasound, laboratory testing, radiologic testing).

Advanced Level Goals: PGY-3

A. Cognitive Skills

1. Recognize, evaluate and treat uveitis associated with immunosuppressed individuals (e.g., active and recovered acquired immune deficiency syndrome, pharmacologic immunosuppression).

2. Recognize, evaluate, and treat acquired and congenital ocular syphilis.

3. Recognize, evaluate, and treat (or refer) less common, rare, or tropical conditions associated with uveitis (e.g., Leishmaniasis).

4. Describe indications and contraindications for corticosteroid treatment of uveitis (e.g., topical, local, systemic), including risks and benefits of therapy.

5. Describe indications and contraindications for immunoo-suppressive therapy in uveitis, use of antimetabolites, cyclosporine, alkylating agents.

B. Technical/Surgical Skills

1. Administer steroids in the treatment of uveitis by various routes.
2. Administer immunosuppressive agents in uveitis (or refer for administration).
3. Evaluate and treat the complications of uveitis therapy (e.g., cataract, glaucoma).
4. Biopsy, when indicated, the vitreous or uveal tract.
5. Insert intravitreal implants containing antiviral or corticosteroid medications.
6. Perform, when indicated, vitrectomy or scleral buckling procedures.

XIV. Ocular Oncology

Basic Level Goals: PGY-1

A. Cognitive Skills
1. Describe the basic categorization of common extraocular and intraocular tumors.
2. Describe the differential diagnosis, epidemiology, evaluation, and management of leukocoria (e.g., inflammatory, infectious, neoplastic, congenital, persistent fetal vasculature, cataract, Coats' disease, vitreous hemorrhage, retinal detachment).
3. Describe major diagnostic features of major intraocular tumor types (e.g., retinoblastoma, choroidal melanoma, metastatic lesions) and describe the differentiating features of similar lesions.

B. Technical/Surgical Skills
1. Perform slit lamp, ophthalmoscopic and ocular transillumination examination of patients with intraocular tumors (e.g., choroidal melanoma).
2. Recognize an ocular tumor and refer appropriately.

Standard Level Goals: PGY-2

A. Cognitive Skills
1. Describe management options for different intraocular tumors.
2. Describe the findings of the Collaborative Ocular Melanoma Study (COMS).
4. Describe basic histopathology of intraocular tumors.
5. List the differential diagnoses for tumors of the iris, ciliary body, choroid, retina and optic disc (e.g., melanoma, retinoblastoma, hemangioma, melanocytoma).
6. Describe diagnostic techniques for common intraocular tumors (e.g., physical examination, imaging, laboratory, oncology referral).
7. Describe the prognostic significance of different types of ocular tumors and be able to guide evaluation for systemic involvement.

B. Technical/Surgical Skills
1. Perform indirect ophthalmoscopy in the diagnosis and localization of intraocular tumors.
2. Perform transillumination for intraocular tumor.
3. Describe indications for an examination under anesthesia for pediatric intraocular tumors.
4. Describe indications for A-scan and B-scan echography of intraocular mass lesions.
5. Describe indications for fluorescein angiography of intraocular tumors.
6. Describe indications for destruction or excision of conjunctival, corneal, and intraocular tumors.
8. Describe indications for and techniques of transpupillary thermal therapy for intraocular tumors.
9. Recognize major histopathologic appearance of common intraocular tumors.
10. Describe the indications for surgical or other therapeutic procedures and their complications, and for referral, if necessary, for:
 a) Plaque or other radiotherapy.
 b) Iridectomy and iridocyclectomy.
 c) Resection of conjunctival tumors.
11. Perform an enucleation.
12. Describe indications for and techniques and complications of radiation therapy for ocular tumors (e.g., radioactive plaque localization, external beam radiation, radiation retinopathy).
13. Discuss various treatment options with patients and their families in a detailed, ethical, and compassionate manner.

Advanced Level Goals: PGY-3

A. Cognitive Skills
1. Describe management options for unusual intraocular tumors (e.g., choroidal metastasis, choroidal osteoma).
2. Apply the findings of the Collaborative Ocular Melanoma Study (COMS).
3. Recognize, evaluate, and treat most forms of extraocular and intraocular tumors.

B. Technical/Surgical Skills
1. Perform indirect ophthalmoscopy for the diagnosis and localization of intraocular tumors prior to treatment.
2. Describe indications for and perform an examination under anesthesia for pediatric intraocular tumors (e.g., retinoblastoma).
3. Describe indications for and interpret A-scan and B-scan echography of intraocular mass lesions.
4. Describe indications for and interpret fluorescein angiography of intraocular tumors.
5. Describe indications for and perform excision or other treatment of conjunctival, corneal, and intraocular tumors.
7. Recognize major histopathologic appearance of common and less common intraocular tumors.
8. Describe indications for surgical procedures and their complications and be able to perform or refer for:
 a) Plaque radiotherapy.
 b) External beam radiotherapy.
 c) Iridectomy and iridocyclectomy.
 d) Resection or cryotherapy of conjunctival tumors, or use of antimetabolite eyedrops.
 e) Transpupillary thermal therapy.
9. Perform a complicated enucleation (e.g., complicated by hemorrhaging, small orbit, scar tissue) or exenteration.

XV. Low Vision Rehabilitation

Basic Level Goals: PGY-1
A. **Cognitive Skills**
1. Describe low vision assessment techniques (e.g., Early Treatment of Diabetic Retinopathy Study charts, Sloane charts).
2. Describe significant co-morbidities that impact low vision rehabilitation.
3. Describe various low vision aids.
4. Describe the optics of low vision devices.
5. Be sensitive to psychological and emotional aspects of visual impairment.
6. Describe challenges commonly encountered by individuals with visual impairments.
7. Prescribe simple but appropriate rehabilitative therapies and optical devices to help the patient meet their goals. (e.g., magnification, illumination).
8. Describe functional implications of various visual system pathologies and diseases.
9. Describe visual field enhancing techniques for hemianopic field loss.
10. Describe the difference between visual acuity testing at both distance and near and contrast sensitivity testing.
11. Describe the evaluation of and rationale for licensing automobile drivers who are visually impaired; understand the local licensing regulations.
12. Describe evaluation of visual acuity and visual field for determination of disability.

Standard Level Goals: PGY-2

A. **Cognitive Skills**
1. Recognize significant co-morbidities that impact low vision rehabilitation.
2. Recognize and describe clinical applications, indications, and limitations of the various low vision aids (e.g., closed circuit television, magnification, large print, Braille, computers with artificial speech).
3. Describe the more advanced optics of low vision devices.

B. **Technical/Surgical Skills**
1. Prescribe more complex rehabilitative therapies and optical devices to help the patient meet their goals.
2. Apply and prescribe visual field enhancing techniques for hemianopic field loss.
3. Perform evaluation of vision assessment in licensing drivers who are visually impaired.
4. Evaluate visual acuity and visual field for determination of disability (for legal and insurance purposes).
5. Demonstrate low vision devices and educate low vision patients on the uses and limitations of these devices.

Advanced Level Goals: PGY-3

A. **Cognitive Skills**
1. Treat significant co-morbidities that impact low vision rehabilitation.
2. Describe indications for the most complex low vision aids.
3. Apply more complex principles of optics of low vision devices.

B. **Technical/Surgical Skills**
1. Prescribe the most complex rehabilitative therapies and optical devices to help the patient meet their goals.
2. Apply and prescribe the most complex visual field enhancing techniques for hemianopic field loss.
XVI. Ophthalmic Practice and Ethics

Basic Level goals: PGY-1

1. Describe the fundamentals and principles of medical ethics in ophthalmology (e.g., patient care decision-making, informed consent, competency issues, ethics of inter-collegial relations, risk management, privacy issues).
2. Describe the basics of ophthalmic practice management (e.g., contractual negotiations, hiring and supervising employees, financial management, working with associates, billing/collecting).
3. Describe the basics of the health care system and reimbursement, as appropriate to the local, regional, and national market of the trainee (e.g., third party payers, managed care, Medicare (USA), medical documentation, Medicaid (USA), private insurance, nationalized health care systems (UK, Canada, and others).

Standard Level Goals: PGY-2

1. Describe and apply more advanced principles of medical ethics (e.g., life and death patient care decision-making, ethics of optometric and non-physician relations, documentation requirements, insurance claims, and risk management).
2. Describe and apply more advanced aspects of practice management (e.g., business models, documentation requirements and coding, privacy requirements, dealing with patients or employees with disabilities).
3. Describe and apply more advanced aspects of health care reimbursement (e.g., physicians' role in managed care organizations, administrative role, third party reimbursement, capitated programs).

Advanced Level Goals: PGY-3

1. Demonstrate proficiency in more advanced principles of medical ethics (e.g., informed consent in children, the mentally ill, disabled, or the demented patient; physician and industry relationships; acceptance and disclosure of gifts or consultation fees).
2. Utilize in clinical practice the principles of practice management (e.g., starting a practice, economics of starting a practice, licensing and credentialling applications).
3. Utilize in clinical practice more advanced aspects of health care reimbursement (e.g., denials of claims, hospital contracting, electronic billing).

Clinical attachment:
Students will be placed different hospital both urban & rural to undertake clinical assignment for supervised case demonstration, attending OT, attain the skill of SICS for cataract, DCR for dacryocystitis, LASER, etc.
Conclusion:

MS in Community Ophthalmology course students will be placed different hospitals both urban & rural to undertake clinical assignment for supervised case demonstration, attending OT, attain the skill of SICS for cataract & DCR for Dacryocystitis.

The tasks of community ophthalmologists in Bangladesh therefore will include:

- Assessment of the eye care needs of the community, including populations-based surveys.
- The design and planning of eye care programmes.
- Management of programmes.
- Evaluation of eye care programmes.
- Development of programmes in community eye health.
- Advocacy for community eye health with politicians, health policy makers and the medical profession.
- Research into the main eye diseases, including aetiology and risk factors, clinical trials & health service research.
- Defining the role of Primary, Secondary & Tertiary Centers of treatment.
- Attain skills like low cost surgery for cataract (SICS) for Combating Cataract Blindness.

To equip the community eye specialist for these tasks, training will be required in:

- Epidemiology and statistics.
- Planning, managing and evaluating eye care programmes.
- Developing communication skills and formulating training programmes and teaching materials.
- Assessing the causes of the important eye diseases in the community including the capability to treat them, Specifically Cataract treatment by low cost SICS.
- Designing, conducting and analyzing research projects.
- Developing human resources.
- Health
- Health information system.

Preamble:

Community Ophthalmology generally deals with the promotion of eye health & prevention of congenital, development, hereditary, communicable, environmental & age related ocular diseases.

It specifically aims to ensure quality in the delivery of eye services at the community, intermediate and specialist level of eye care.

It is an extension of focus from individuals, as in traditional clinical practice of ophthalmology to an assessment of eye health & eye care needs of population. Community ophthalmology or community eye health is an important part of the health care develop a skill specific and knowledge about community eye problem/diseases and their prevention which is usually not included in conventional clinical ophthalmic training & degrees.
Bangladesh National Eye Care Plan & Vision 2020 initiative promoted the comprehensive eye care (CEM) model as its preferred programme approach. The CEC concept aims to ensure that beneficiaries have access to a network of services covering the promotion of eye health, prevention of blindness and the provision of clinical services for treating common and blinding eye diseases. The CEC approach relies on building eye care services within overall local health care system. It emphasized the need for accessibility of services at community level and encourage community participation at all levels in order to maximize ownership and the use of local resources.

The sole purposes of these efforts are to prevent & reduce the eye diseases, visual loss & disability in the community.

Background to the establishment of the MS course in community ophthalmology:

There are traditional courses in ophthalmology like MS/FCPS/DO/MCPS. But since long there have been a number of recommendations made by the WHO headquarters, World Health Organization and International agency for the prevention of blindness concerning the introduction of a higher level qualification in Community Eye Health in this region. WHO’s “Study on the status of ophthalmic Medical Education in the South East Asia Region an overview” in April 2002, revealed the following perceptions:

“The exposure to community Ophthalmology at the postgraduate level is grossly inadequate in most countries of the Region.”

Ophthalmologists in the Region felt that they were poorly exposed to managerial and communication skills during their training though these skills were perceived to be very important in actual practice. All the respondents were unanimous that Community Eye Care needs to be emphasized much more than is currently being done.